
Computing and Statistical Data Analysis
Lecture 3

Loops: while, do-while, for, ...

Type casting: static_cast, etc.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Basic mathematical functions

More i/o: formatting tricks

Functions

“while” loops
A while loop allows a set of statements to be repeated as long as
a particular condition is true:

while(boolean expression){
// statements to be executed as long as
// boolean expression is true

}

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

while (x < xMax){
x += y;
...

}

For this to be useful, the boolean expression must be updated
upon each pass through the loop:

Possible that statements never executed, or that loop is infinite.

“do-while” loops
A do-while loop is similar to a while loop, but always executes
at least once, then continues as long as the specified condition is
true.

do {
// statements to be executed first time
// through loop and then as long as
// boolean expression is true

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

} while (boolean expression)

Can be useful if first pass needed to initialize the boolean
expression.

“for” loops
A for loop allows a set of statements to be repeated a fixed
number of times. The general form is:

for (initialization action ;
boolean expression ; update action){

// statements to be executed

}

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

}

for (int i=0; i<n; i++){
// statements to be executed n times

}

Often this will take on the form:

Note that here i is defined only inside the { }.

Examples of loops

int sum = 0;
for (int i = 1; i<=n; i++){
sum += i;

}
cout << "sum of integers from 1 to " << n <<

" is " << sum << endl;

A for loop:

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

A do-while loop:
int n;
bool gotValidInput = false;
do {
cout << "Enter a positive integer" << endl;
cin >> n;
gotValidInput = n > 0;

} while (!gotValidInput);

Nested loops

// loop over pixels in an image

for (int row=1; row<=nRows; row++){
for (int column=1; column<=nColumns; column++){
int b = imageBrightness(row, column);
...

Loops (as well as if-else structures, etc.) can be nested, i.e.,
you can put one inside another:

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

...

} // loop over columns ends here
} // loop over rows ends here

We can put any kind of loop into any other kind, e.g., while
loops inside for loops, vice versa, etc.

More control of loops
continue causes a single iteration of loop to be skipped
(jumps back to start of loop).

while (processEvent) {

if (eventSize > maxSize) { continue; }

break causes exit from entire loop (only innermost one if
inside nested loops).

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

if (numEventsDone > maxEventsDone) {
break;

}

// rest of statements in loop ...

}

Usually best to avoid continue or break by use of if statements.

Type casting
Often we need to interpret the value of a variable of one type
as being of a different type, e.g., we may want to carry out
floating-point division using variables of type int.

Suppose we have: int n, m; n = 5; m = 3; and we want
to know the real-valued ratio of n/m (i.e. not truncated). We
need to “type cast” n and m from int to double (or float):
double x = static_cast<double>(n) /

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

double x = static_cast<double>(n) /
static_cast<double>(m);

will give x = 1.666666...

Similarly we can use static_cast<int>(x) to turn a float
or double into an int, etc.

Will also work here with static_cast<double>(n)/m;
but static_cast<double>(n/m); gives 1.0.

Digression #1: bool vs. int
C and earlier versions of C++ did not have the type bool.
Instead, an int value of zero was interpreted as false, and any
other value as true. This still works in C++:
int num = 1;
if (num) {
... // condition true if num != 0

It is best to avoid this. If you want true or false, use bool.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

It is best to avoid this. If you want true or false, use bool.
If you want to check whether a number is zero, then use the
corresponding boolean expression:

if (num != 0) {
... // condition true if num != 0

Digression #2: value of an assignment and == vs. =

In C++, an assignment statement has an associated value,
equal to the value assigned to the left-hand side. We may see:
int x, y;
x = y = 0;

Recall = is the assignment operator, e.g., x = 3;

== is used in boolean expressions, e.g., if (x == 3) { ...

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

x = y = 0;

This says first assign 0 to y, then assign its value (0) to x.
This can lead to very confusing code. Or worse:
if (x = 0) { ... // condition always false!

Here what the author probably meant was
if (x == 0) { ...

Standard mathematical functions
Simple mathematical functions are available through the
standard C library cmath (previously math.h), including:

abs acos asin atan atan2 cos cosh exp
fabs fmod log log10 pow sin sinh sqrt
tan tanh

Most of these can be used with float or double arguments;
return value is then of same type.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

return value is then of same type.

Raising to a power, z = xy, with z = pow(x,y) involves log and
exponentiation operations; not very efficient for z = 2, 3, etc.
Some advocate e.g. double xSquared = x*x;

To use these functions we need: #include <cmath>

Google for C++ cmath or see www.cplusplus.com for more info.

A simple example
Create file testMath.cc containing:
// Simple program to illustrate cmath library
#include <iostream>
#include <cmath>
using namespace std;
int main() {

for (int i=1; i<=10; i++){

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

for (int i=1; i<=10; i++){
double x = static_cast<double>(i);
double y = sqrt(x);
double z = pow(x, 1./3.); // note decimal pts
cout << x << " " << y << " " << z << endl;

}

}

Note indentation and use of blank lines for clarity.

Running testMath
Compile and link: g++ -o testMath testMath.cc

1 1 1
2 1.41421 1.25992
3 1.73205 1.44225
4 2 1.5874
...

Run the program: ./testMath

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

The numbers don’t line up in neat columns -- more later.

Often it is useful to save output directly to a file. Unix allows
us to redirect the output:
./testMath > outputFile.txt

Similarly, use >> to append file, >! to insist on overwriting.
These tricks work with any Unix commands, e.g., ls, grep, ...

Improved i/o: formatting tricks
Often it’s convenient to control the formatting of numbers.

cout.setf(ios::fixed);
cout.precision(4);

will result in 4 places always to the right of the decimal point.
cout.setf(ios::scientific);

will give scientific notation, e.g., 3.4516e+05. To undo this,
use

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

use cout.unsetf(ios::scientific);

cout.width(15) will cause next item sent to cout to occupy
15 spaces, e.g.,

cout.width(5); cout << x;
cout.width(10); cout << y;
cout.width(10); cout << z << endl;

To use cout.width need #include <iomanip> .

More formatting: printf and scanf
Much of this can be done more easily with the C function printf:

printf ("formatting info" [, arguments]);

For example, for float or double x and int i:
printf("%f %d \n", x, i);

will give a decimal notation for x and integer for i.
\n does (almost) same as endl;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

\n does (almost) same as endl;

Suppose we want 8 spaces for x, 3 to the right of the decimal
point, and 10 spaces for i:

printf("%8.3f %10d \n", x, i);

To use printf need #include <cstdlib> .

For more info google for printf examples, etc.
Also scanf, analogue of cin.

Scope basics
The scope of a variable is that region of the program in which it
can be used.

If a block of code is enclosed in braces { }, then this delimits
the scope for variables declared inside the braces. This
includes braces used for loops and if structures:

int x = 5;
for (int i=0; i<n; i++){

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

for (int i=0; i<n; i++){
int y = i + 3;
x = x + y;

}
cout << "x = " << x << endl; // OK
cout << "y = " << y << endl; // BUG -- y out of scope
cout << "i = " << i << endl; // BUG -- i out of scope

Variables declared outside any function, including main, have
‘global scope’. They can be used anywhere in the program.

More scope

int x = 5;
{
double x = 3.7;
cout << "x = " << x << endl; // will print x = 3.7

The meaning of a variable can be redefined in a limited ‘local
scope’:

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

cout << "x = " << x << endl; // will print x = 3.7
}
cout << "x = " << x << endl; // will print x = 5

In general try to keep the scope of variables as local as possible.
This minimizes the chance of clashes with other variables to
which you might try to assign the same name.

(This is bad style; example is only to illustrate local scope.)

Namespaces

namespace myNameSpace
{
// declare entities inside namespace…
int a, b;

}

Another way to delimit the scope of a variable is with a namespace.

To use e.g. outside of the braces, specify the namespace:

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Or you can move the symbols into the global namespace with

To use e.g. a, b outside of the braces, specify the namespace:
myNameSpace::a = myNameSpace::b + 37;

using namespace myNameSpace;

Rather than include the entire std namespace (large), better to
use e.g.

std::cout << "blahblah..." << std::endl;

Functions
Up to now we have seen the function main, as well as
mathematical functions such as sqrt and cos. We can also
define other functions, e.g.,
const double PI = 3.14159265; // global constant
double ellipseArea(double, double); // prototype
int main() {
double a = 5;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

double a = 5;
double b = 7;
double area = ellipseArea(a, b);
cout << "area = " << area << endl;
return 0;

}

double ellipseArea(double a, double b){
return PI*a*b;

}

The usefulness of functions

Now we can ‘call’ ellipseArea whenever we need the area of
an ellipse; this is modular programming.

The user doesn’t need to know about the internal workings of
the function, only that it returns the right result.

‘Procedural abstraction’ means that the implementation details

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

‘Procedural abstraction’ means that the implementation details
of a function are hidden in its definition, and needn’t concern
the user of the function.

A well written function can be re-used in other parts of the
program and in other programs.

Functions allow large programs to be developed by teams.

Declaring functions
Before we can use a function, we need to declare it at the top of
the file (before int main()).

double ellipseArea(double, double);

This is called the ‘prototype’ of the function. It begins with
the function’s ‘return type’. The function can be used like a

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

the function’s ‘return type’. The function can be used like a
variable of this type. (More on return types later.)

The prototype must also specify the types of the arguments, in
the correct sequence. Variable names are optional in the
prototype.

The specification of the types and order of the arguments is
called the function’s signature.

Defining functions
The function must then be defined, i.e., we must say what it
does with its arguments and what it returns.

double ellipseArea(double a, double b){
return PI*a*b;

}

The first word defines the type of value returned, here double.

Then comes a list of parameters, each preceded by its type.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Note the scope of a and b is local to the function ellipseArea.
We could have given them names different from the a and b in
the main program (and we often do).

Then comes a list of parameters, each preceded by its type.

Then the body of the function does the necessary computation and
finally we have the return statement followed by the
corresponding value of the function.

Return type of a function

double ellipseArea(double, double);

The prototype must also indicate the return type of the function,
e.g., int, float, double, char, bool.

The function’s return statement must return a value of this type.
double ellipseArea(double a, double b){
return PI*a*b;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

When calling the function, it must be used in the same manner
as an expression of the corresponding return type, e.g.,

return PI*a*b;
}

double volume = ellipseArea(a, b) * height;

Return type void

The return type may be ‘void’, in which case there is no return
statement in the function (like a FORTRAN subroutine):

void showProduct(double a, double b){
cout << "a*b = " << a*b << endl;

}

To call a function with return type void, we simply write its

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

To call a function with return type void, we simply write its
name with any arguments followed by a semicolon:

showProduct(3, 7);

Wrapping up lecture 3

We’ve now seen all of the important control structures
and enough i/o to do some useful work.

We know how to reinterpret e.g. a double as an int
(type casting) and we’ve seen the standard C library of
mathematical functions (cmath).

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

mathematical functions (cmath).

We’ve started off with declaring and defining our own
functions. Next we need to investigate more about
functions such as how to put them in separate files,
how arguments are passed to them, etc.

