
Computing and Statistical Data Analysis
Lecture 4

Putting functions in separate files

Passing arguments by value or by reference.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Inline functions

Default arguments, function overloading

Files and streams

Putting functions in separate files

Often we put functions in a separate files. The declaration of a
function goes in a ‘header file’ called, e.g., ellipseArea.h,
which contains the prototype:

#ifndef ELLIPSE_AREA_H
#define ELLIPSE_AREA_H

// function to compute area of an ellipse

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

// function to compute area of an ellipse

double ellipseArea(double, double);

#endif

The directives #ifndef (if not defined), etc., serve to ensure that
the prototype is not included multiple times. If ELLIPSE_AREA_H
is already defined, the declaration is skipped.

Putting functions in separate files, continued

Then the header file is included (note use of " " rather than < >)
in the file where the function is defined, e.g., ellipseArea.cc,

#include "ellipseArea.h"
double ellipseArea(double a, double b){
return PI*a*b;

}

as well as in the files containing any other functions that will call

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

as well as in the files containing any other functions that will call
it such as main:

#include "ellipseArea.h"
int main() {
double a = 5; double b = 7;
double area = ellipseArea(a, b);
...

}

Passing arguments by value
Consider a function that tries to change the value of an argument:
void tryToChangeArg(int x){
x = 2*x;

}

It won’t work:
int x = 1;
tryToChangeArg(x);
cout << "now x = " << x << endl; // x still = 1

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

cout << "now x = " << x << endl; // x still = 1

This is because the argument is passed ‘by value’. Only a copy of
the value of x is passed to the function.

In general this is a Good Thing. We don’t want arguments of
functions to have their values changed unexpectedly.
Sometimes, however, we want to return modified values of the
arguments. But a function can only return a single value.

Passing arguments by reference
We can change the argument’s value passing it ‘by reference’.
To do this we include an & after the argument type in the function’s
prototype and in its definition (but no & in the function call):

void tryToChangeArg(int&); // prototype

void tryToChangeArg(int& x){ // definition
x = 2*x;

}

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

}

int main(){
int x = 1;
tryToChangeArg(x);
cout << "now x = " << x << endl; // now x = 2

}

Argument passed by reference must be a variable, e.g.,
tryToChangeArg(7); will not compile.

Variable scope inside functions
Recall that the definition of a function is enclosed in braces.
Therefore all variables defined inside it are local to that function.

double pow(double x, int n){
double y = static_cast<double>(n) * log(x);
return exp(y);

}

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

...
double y = pow(3,2); // this is a different y

The variable y in the definition of pow is local. We can use the
same variable name outside this function with no effect on or
from the variable y inside pow.

Inline functions
For very short functions, we can include the keyword inline in
their definition (must be in same file, before calling program):

inline double pow(double x, int n){
double y = static_cast<double>(n) * log(x);
return exp(y);

}

The compiler will (maybe) replace all instances of the function by

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

The compiler will (maybe) replace all instances of the function by
the code specified in the definition. This will run faster than
ordinary functions but results in a larger program.

Only use make very short functions inline and then only when
speed is a concern, and then only when you’ve determined that the
function is using a significant amount of time.

Default arguments
Sometimes it is convenient to specify default arguments for
functions in their declaration:

double line(double x, double slope=1, double offset=0);

The function is then defined as usual:

double line(double x, double slope, double offset){
return x*slope + offset;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

return x*slope + offset;
}

We can then call the function with or without the defaults:

y = line (x, 3.7, 5.2); // here slope=3.7, offset=5.2
y = line (x, 3.7); // uses offset=0;
y = line (x); // uses slope=1, offset=0

Function overloading
We can define versions of a function with different numbers or types
of arguments (signatures). This is called function overloading:

double cube(double);
double cube (double x){
return x*x*x;

}

double cube(float);

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

double cube(float);
double cube (float x){
double xd = static_cast<double>(x);
return xd*xd*xd;

}

Return type can be same or different; argument list must differ in
number of arguments or in their types.

Function overloading, cont.
When we call the function, the compiler looks at the signature of
the arguments passed and figures out which version to use:

float x;
double y;
double z = cube(x); // calls cube(float) version
double z = cube(y); // calls cube(double) version

This is done e.g. in the standard math library cmath. There is a

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

This is done e.g. in the standard math library cmath. There is a
version of sqrt that takes a float (and returns float), and another
that takes a double (and returns double).

Note it is not sufficient if functions differ only by return type -- they
must differ in their argument list to be overloaded.

Operators (+, -, etc.) can also be overloaded. More later.

Writing to and reading from files
Here is a simple program that opens an existing file in order to
read data from it:

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
int main(){
// create an ifstream object (name arbitrary)...

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

// create an ifstream object (name arbitrary)...
ifstream myInput;
// Now open an existing file...
myInput.open("myDataFile.txt");
// check that operation worked...
if (myInput.fail()) {
cout << "Sorry, couldn’t open file" << endl;
exit(1); // from cstdlib

}
...

Reading from an input stream
The input file stream object is analogous to cin, but instead of
getting data from the keyboard it reads from a file. Note use of
“dot” to call the ifstream’s “member functions”, open, fail, etc.

Suppose the file contains columns of numbers like
1.0 7.38 0.43
2.0 8.59 0.52
3.0 9.01 0.55

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

...

We can read in these numbers from the file:
float x, y, z;
for(int i=1; i<=numLines; i++){
myInput >> x >> y >> z;
cout << "Read " << x << " " << y << " " << z << endl;

}

This loop requires that we know the number of lines in the file.

Reading to the end of the file
Often we don’t know the number of lines in a file ahead of
time. We can use the “end of file” (eof) function:

float x, y, z;
int line = 0;
while (!myInput.eof()){
myInput >> x >> y >> z;
if (!myInput.eof()) {
line++;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

line++;
cout << x << " " << y << " " << z << endl;

}
}
cout << lines << " lines read from file" << endl;
...
myInput.close(); // close when finished

Note some gymnastics needed to avoid reading last line twice.

Writing data to a file
We can write to a file with an ofstream object:

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
int main(){
// create an ofstream object (name arbitrary)...

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

ofstream myOutput;
// Now open a new file...
myOutput.open("myDataFile.txt");
// check that operation worked...
if (myOutput.fail()) {
cout << "Sorry, couldn’t open file" << endl;
exit(1); // from cstdlib

}
...

Writing data to a file, cont.
Now the ofstream object behaves like cout:

for (int i=1; i<=n; i++){
myOutput << i << "\t" << i*i << endl;

}

Note use of tab character \t for formatting (could also
use e.g. " " or)

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Alternatively use the functions setf, precision,
width, etc. These work the same way with an
ofstream object as they do with cout, e.g.,

myOutput.setf(ios::fixed);
myOutput.precision(4);
...

File access modes
The previous program would overwrite an existing file.
To append an existing file, we can specify:

myOutput.open("myDataFile.txt", ios::app);

This is an example of a file access mode. Another useful one is:

myOutput.open("myDataFile.txt", ios::bin);

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

The data is then written as binary, not formatted. This is much
more compact, but we can’t check the values with an editor.

For more than one option, separate with vertical bar:

myOutput.open("myDataFile.txt", ios::bin | ios::app);

Many options, also for ifstream. Google for details.

Putting it together
Now let’s put together some of what we’ve just seen. The
program reads from a file a series of exam scores, computes the
average and writes it to another file. In file examAve.cc we have

#include <iostream>
#include <fstream>
#include <cstdlib>
#include "aveScore.h"

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

#include "aveScore.h"
using namespace std;
int main(){
// open input file
ifstream inFile;
inFile.open("studentScores.txt");
if (inFile.fail()) {
cerr << "Couldn’t open input file" << endl;
exit(1);

}
...

examAve, continued
// open the output file
ofstream outFile;
outFile.open("averageScores.txt");
if (outFile.fail()) {
cerr << "Couldn’t open output file" << endl;
exit(1);

}

while (!inFile.eof()){

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

while (!inFile.eof()){
int studentNum;
double test1, test2, test3;
inFile >> studentNum >> test1 >> test2 >> test3;
if(!inFile.eof()){
double ave = aveScore (test1, test2, test3);
outFile << studentNum << "\t" << ave << endl;

}
}

More examAve
// close up
inFile.close();
outFile.close();
return 0;

}

Now the file aveScore.cc contains
#include "aveScore.h"

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

double aveScore(double a, double b, double c){
double ave = (a + b + c)/3.0;
return ave;

}

More examAve and aveScore

The header file aveScore.h contains

#ifndef AVE_SCORE_H
#define AVE_SCORE_H
double aveScore(double, double, double);
#endif AVE_SCORE_H

We compile and link the program with

g++ -o examAve examAve.cc aveScore.cc

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

The input data file studentScores.txt might contain

g++ -o examAve examAve.cc aveScore.cc

1 73 65 68
2 52 45 44
3 83 85 91

etc. The example is trivial but we can generalize this to very
complex programs.

Wrapping up lecture 4

We’ve now seen enough C++ to write some reasonably
sophisticated programs.

We have seen (almost) all of the basic control structures, and
we can write our own functions.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Next week we will introduce a few more “basic” things such as
arrays and strings.

Then for something a bit different: pointers

Finally we will be ready to introduce classes, objects, etc.
which form the core of Object Oriented Programming.

