
Computing and Statistical Data Analysis
Lecture 5

Arrays

Pointers

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Strings

Arrays
An array is a fixed-length list containing variables of the same type.

Declaring an array: data-type variableName[numElements];

int score[10];
double energy[50], momentum[50];
const int MaxParticles = 100;
double ionizationRate[MaxParticles];

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

The number in brackets [] gives the total number of elements,e.g.
the array score above has 10 elements, numbered 0 through 9.
The individual elements are referred to as

score[0], score[1], score[2], ..., score[9]

The index of an array can be any integer expression with a value
from zero up to the number of elements minus 1. If you try to
access score[10] this is an error!

Arrays, continued
Array elements can be initialized with assignment statements and
otherwise manipulated in expressions like normal variables:

const int NumYears = 50;
int year[NumYears];
for(int i=0; i<NumYears; i++){
year[i] = i + 1960;

}

Note that C++ arrays always begin with zero, and the last element

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Note that C++ arrays always begin with zero, and the last element
has an index equal to the number of elements minus one.

This makes it awkward to implement, e.g., n-dimensional vectors
that are naturally numbered x = (x1, ..., xn).

For static arrays as shown here the size must be a constant. Its
value must be known at compile time. Later we will see how to
declare dynamic arrays, whose size is determined at run time.

Multidimensional arrays
An array can also have two or more indices. A two-dimensional
array is often used to store the values of a matrix:

const int numRows = 2;
const int numColumns = 3;
double matrix[numRows][numColumns];

Again, notice that the array size is 2 by 3, but the row index runs
from 0 to 1 and the column index from 0 to 2.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

from 0 to 1 and the column index from 0 to 2.

matrix[i][j], matrix[i][j+1], etc.

The elements are stored in memory in the order:

Usually we don’t need to know how the data are stored internally.
(Ancient history: in FORTRAN, the left-most index gave adjacent
elements in memory.)

Initializing arrays
We can initialize an array together with the declaration:

int myArray[5] = {2, 4, 6, 8, 10};

Similar for multi-dimensional arrays:

double matrix[numRows][numColumns] =
{ {3, 7, 2}, {2, 5, 4} };

In practice we will usually initialize arrays with assignment

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

In practice we will usually initialize arrays with assignment
statements.

Example: multiplication of matrix and vector
// Initialize vector x and matrix A
const int nDim = 5;
double x[nDim];
double A[nDim][nDim];
for (int i=0; i<nDim; i++){
x[i] = someFunction(i);
for (int j=0; j<nDim; j++){
A[i][j] = anotherFunction(i, j);

}

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

}
}

// Now find y = Ax
double y[nDim];
for (int i=0; i<nDim; i++){
y[i] = 0.0;
for (int j=0; j<nDim; j++){
y[i] += A[i][j] * x[j];

}
}

Passing arrays to functions
Suppose we want to use an array a of length len as an argument
of a function. In the function’s declaration we say, e.g.,

double sumElements(double a[], int len);

We don’t need to specify the number of elements in the prototype,
but we often pass the length into the function as an int variable.

Then in the function definition we have, e.g.,

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

double sumElements(double a[], int len){
double sum = 0.0;
for (int i=0; i<len; i++){
sum += a[i];

}
return sum;

}

Then in the function definition we have, e.g.,

Passing arrays to functions, cont.
Then to call the function we say, e.g.,

double s = sumElements(myMatrix, itsLength);

Note there are no brackets for myMatrix when we pass it to the
function.

You could, however, pass myMatrix[i], not as a matrix but as

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

You could, however, pass myMatrix[i], not as a matrix but as
a double, i.e., the ith element of myMatrix. For example,

double x = sqrt(myMatrix[i]);

Passing arrays to functions
When we pass an array to a function, it works as if passed by
reference, even though we do not use the & notation as with non-
array variables. (The array name is a “pointer” to the first array
element. More on pointers later.)

This means that the array elements could wind up getting their
values changed:

void changeArray (double a[], int len){

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

void changeArray (double a[], int len){
for(int i=0; i<len; i++){
a[i] *= 2.0;

}
}

int main(){
...
changeArray(a, len); // elements of a doubled

Passing multidimensional arrays to functions

When passing a multidimensional array to a function, we need to
specify in the prototype and function definition the number of
elements for all but the left-most index:

void processImage(int image[][numColumns],
int numRows, int numColumns){

...

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

(But we still probably need to pass the number of elements for
both indices since their values are needed inside the function.)

Pointers
A pointer variable contains a memory address. It ‘points’ to a
location in memory. To declare a pointer, use a star, e.g.,

int* iPtr;
double * xPtr;
char *c;
float *x, *y;

Note some freedom in where to put the star. I prefer the first
notation as it emphasizes that iPtr is of type “pointer to int”.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

notation as it emphasizes that iPtr is of type “pointer to int”.

(But in int* iPtr, jPtr; only iPtr is a pointer--need 2 stars.)

Name of pointer variable can be any valid identifier, but often
useful to choose name to show it’s a pointer (suffix Ptr, etc.).

Pointers: the & operator
Suppose we have a variable i of type int:

int i = 3;

We can define a pointer variable to point to the memory location
that contains i:

int* iPtr = &i;

Here & means “address of”. Don’t confuse it with the & used

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Here & means “address of”. Don’t confuse it with the & used
when passing arguments by reference.

Initializing pointers
A statement like

int* iPtr;

declares a pointer variable, but does not initialize it. It will be
pointing to some “random” location in memory. We need
to set its value so that it points to a location we’re interested in,
e.g., where we have stored a variable:

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

e.g., where we have stored a variable:

iPtr = &i;

(just as ordinary variables must be initialized before use).

Dereferencing pointers: the * operator

Similarly we can use a pointer to access the value of the variable
stored at that memory location. E.g. suppose iPtr = &i; then

int iCopy = *iPtr; // now iCopy equals i

This is called ‘dereferencing’ the pointer. The * operator means
“value stored in memory location being pointed to”.

If we set a pointer equal to zero (or) it points to nothing.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

If we set a pointer equal to zero (or NULL) it points to nothing.
(The address zero is reserved for null pointers.)

If we try to dereference a null pointer we get an error.

Why different kinds of pointers?
Suppose we declare

int* iPtr; // type "pointer to int"
float* fPtr; // type "pointer to float"
double* dPtr; // type "pointer to double"

We need different types of pointers because in general, the
different data types (int, float, double) take up different
amounts of memory. If declare another pointer and set

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

amounts of memory. If declare another pointer and set

int* jPtr = iPtr + 1;

then the +1 means “plus one unit of memory address for int”,
i.e., if we had int variables stored contiguously, jPtr would
point to the one just after iPtr.

But the types float, double, etc., take up different amounts of
memory, so the actual memory address increment is different.

Passing pointers as arguments
When a pointer is passed as an argument, it divulges an address to
the called function, so the function can change the value stored at
that address:

void passPointer(int* iPtr){
*iPtr += 2; // note *iPtr on left!

}

...

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

int i = 3;
int* iPtr = &i;
passPointer(iPtr);
cout << "i = " << i << endl; // prints i = 5
passPointer(&i); // equivalent to above
cout << "i = " << i << endl; // prints i = 7

End result same as pass-by-reference, syntax different. (Usually
pass by reference is the preferred technique.)

Pointers vs. reference variables
A reference variable behaves like an alias for a regular variable.
To declare, place & after the type:

Passing a reference variable to a function is the same as

int i = 3;
int& j = i; // j is a reference variable
j = 7;
cout << "i = " << i << endl; // prints i = 7

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Passing a reference variable to a function is the same as
passing a normal variable by reference.

passReference(j);
cout << "i = " << i << endl; // prints i = 9

void passReference(int& i){
i += 2;

}

What to do with pointers
You can do lots of things with pointers in C++, many of which
result in confusing code and hard-to-find bugs.

One of the main differences between Java and C++: Java doesn’t
have pointer variables (generally seen as a Good Thing).

To learn about “pointer arithmetic” and other dangerous
activities, consult most C++ books; we will not go into it here.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

activities, consult most C++ books; we will not go into it here.

The main usefulness of pointers for us is that they will allow
us to allocate memory (create variables) dynamically, i.e., at
run time, rather than at compile time.

Dynamic arrays
An array’s name is a pointer to its first element. We can create
a “dynamic array” using the new operator:

double* array;
int len;
cout << "Enter array length" << endl;
cin >> len; // array length set at run time
array = new double[len];

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

array = new double[len];
...

When we’re done (e.g. at end of function where it’s used), we need
to delete the array:

delete [] array;

Strings (the old way)
A string is a sequence of characters. In C and in earlier versions of
C++, this was implemented with an array of variables of type char,
ending with the character \0 (counts as a single ‘null’ character):

char aString[] = "hello"; // inserts \0 at end

The cstring library (#include <cstring>) provides functions
to copy strings, concatenate them, find substrings, etc. E.g.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

to copy strings, concatenate them, find substrings, etc. E.g.

char* strcpy(char* target, const char* source);

takes as input a string source and sets the value of a string target,
equal to it. Note source is passed as const -- it can’t be changed.

You will see plenty of code with old “C-style” strings, but there is
now a better way: the string class (more on this later).

Example with strcpy
#include <iostream>
#include <cstring>
using namespace std;
int main(){
char string1[] = "hello";
char string2[50];
strcpy(string2, string1);
cout << "string2: " << string2 << endl;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

cout << "string2: " << string2 << endl;
return 0;

}

No need to count elements when initializing string with " ".

Also \0 is automatically inserted as last character.

Program will print: string2 = hello

Wrapping up lecture 5

We are now almost done with the part of C++ that resembles C,
i.e., the part that doesn’t deal with classes or objects.

We’ve seen arrays (static and dynamic).

We’ve introduced pointers (but not yet done much with them).

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

We’ve seen briefly “C-style” strings.

Next we cover classes and objects -- the core of object oriented
programming.

