
Computing and Statistical Data Analysis
Lecture 6

Introduction to classes and objects:

Declaring classes
A TwoVector class

Creating objects

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Creating objects

Data members

Member functions

Constructors

Defining the member functions

Pointers to objects

Classes
A class is something like a user-defined data type. The class
must be declared with a statement of the form:

class MyClassName {
public:
public function prototypes and
data declarations;
...

private:
private function prototypes and

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

private function prototypes and
data declarations;
...

};

Typically this would be in a file called MyClassName.h and the
definitions of the functions would be in MyClassName.cc.

Note the semi-colon after the closing brace.
For class names often use UpperCamelCase.

A simple class: TwoVector
We might define a class to represent a two-dimensional vector:

class TwoVector {
public:
TwoVector();
TwoVector(double x, double y);
double x();
double y();
double r();

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

double r();
double theta();
void setX(double x);
void setY(double y);
void setR(double r);
void setTheta(double theta);

private:
double m_x;
double m_y;

};

Class header files
The header file must be included (#include "MyClassName.h")
in other files where the class will be used.

To avoid multiple declarations, use the same trick we saw before
with function prototypes, e.g., in TwoVector.h :

#ifndef TWOVECTOR_H
#define TWOVECTOR_H

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

class TwoVector {
public:
...

private:
...

};

#endif

Objects
Recall that variables are instances of a data type, e.g.,

double a; // a is a variable of type double

Similarly, objects are instances of a class, e.g.,

#include "TwoVector.h"
int main() {
TwoVector v; // v is an object of type TwoVector

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

TwoVector v; // v is an object of type TwoVector

(Actually, variables are also objects in C++. Sometimes class
instances are called “class objects” -- distinction is not important.)

A class contains in general both:

variables, called “data members” and
functions, called “member functions” (or “methods”)

Data members of a TwoVector object
The data members of a TwoVector are:

...
private:
double m_x;
double m_y;

Their values define the “state” of the object.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Because here they are declared private, a TwoVector object’s
values of m_x and m_y cannot be accessed directly, but only from
within the class’s member functions (more later).

The optional prefixes m_ indicate that these are data members.
Some authors use e.g. a trailing underscore. (Any valid identifier
is allowed.)

The constructors of a TwoVector
The first two member functions of the TwoVector class are:

...
public:
TwoVector();
TwoVector(double x, double y);

These are special functions called constructors.

A constructor always has the same name as that of the class.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

A constructor always has the same name as that of the class.

It is a function that is called when an object is created.

A constructor has no return type.

There can be in general different constructors with different
signatures (type and number of arguments).

The constructors of a TwoVector, cont.
When we declare an object, the constructor is called which has
the matching signature, e.g.,

TwoVector u; // calls TwoVector::TwoVector()

The constructor with no arguments is called the “default
constructor”. If, however, we say

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

TwoVector v(1.5, 3.7);

then the version that takes two double arguments is called.

If we provide no constructors for our class, C++ automatically
gives us a default constructor.

Defining the constructors of a TwoVector
In the file that defines the member functions, e.g., TwoVector.cc,
we precede each function name with the class name and :: (the
scope resolution operator). For our two constructors we have:

TwoVector::TwoVector() {
m_x = 0;
m_y = 0;

}
TwoVector::TwoVector(double x, double y) {

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

TwoVector::TwoVector(double x, double y) {
m_x = x;
m_y = y;

}
The constructor serves to initialize the object.
If we already have a TwoVector v and we say

TwoVector w = v;

this calls a “copy constructor” (automatically provided).

The member functions of TwoVector
We call an object’s member functions with the “dot” notation:

TwoVector v(1.5, 3.7); // creates an object v
double vX = v.x();
cout << "vX = " << vX << endl; // prints vX = 1.5
...

If the class had public data members, e.g., these would also be
called with a dot. E.g. if m_x and m_y were public, we could say

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

double vX = v.m_x;

We usually keep the data members private, and only allow the user
of an object to access the data through the public member functions.
This is sometimes called “data hiding”.

If, e.g., we were to change the internal representation to polar
coordinates, we would need to rewrite the functions x(), etc., but
the user of the class wouldn’t see any change.

Defining the member functions
Also in TwoVector.cc we have the following definitions:

double TwoVector::x() const { return m_x; }
double TwoVector::y() const { return m_y; }
double TwoVector::r() const {
return sqrt(m_x*m_x + m_y*m_y);

}
double TwoVector::theta() const {
return atan2(m_y, m_x); // from cmath

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

return atan2(m_y, m_x); // from cmath
}
...

These are called “accessor” or “getter” functions.

They access the data but do not change the internal state of the
object; therefore we include const after the (empty) argument list
(more on why we want const here later).

More member functions
Also in TwoVector.cc we have the following definitions:

void TwoVector::setX(double x) { m_x = x; }
void TwoVector::setY(double y) { m_y = y; }
void TwoVector::setR(double r) {
double cosTheta = m_x / this->r();
double sinTheta = m_y / this->r();
m_x = r * cosTheta;
m_y = r * sinTheta;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

m_y = r * sinTheta;
}

These are “setter” functions. As they belong to the class, they are
allowed to manipulate the private data members m_x and m_y.

To use with an object, use the “dot” notation:
TwoVector v(1.5, 3.7);
v.setX(2.9); // sets v’s value of m_x to 2.9

Pointers to objects
Just as we can define a pointer to type int,

int* iPtr; // type "pointer to int"

we can define a pointer to an object of any class, e.g.,

TwoVector* vPtr; // type "pointer to TwoVector"

This doesn’t create an object yet! This is done with, e.g.,

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

This doesn’t create an object yet! This is done with, e.g.,

vPtr = new TwoVector(1.5, 3.7);

vPtr is now a pointer to our object. With an object pointer, we
call member functions (and access data members) with -> (not
with “.”), e.g.,

double vX = vPtr->x();
cout << "vX = " << vX << endl; // prints vX = 1.5

Forgotten detail: the this pointer

Inside each object’s member functions, C++ automatically provides
a pointer called this. It points to the object that called the member
function. For example, we just saw

void TwoVector::setR(double r) {
double cosTheta = m_x / this->r();
double sinTheta = m_y / this->r();
m_x = r * cosTheta;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

m_x = r * cosTheta;
m_y = r * sinTheta;

}

Here the use of this is optional (but nice, since it emphasizes what
belongs to whom). It can be needed if one of the function’s
parameters has the same name, say, x as a data member. By default,
x means the parameter, not the data member; this->x is then used
to access the data member.

Wrapping up lecture 6
We’ve introduced classes -- these behave like a sort of user defined
data type.

Objects are instances of classes. In addition to holding data they
have a set of functions that can act on the data. This is what
distinguishes object-oriented programming from “procedural
programming”.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Next week we will carry on with the TwoVector class, adding more
member functions, e.g., TwoVector::rotate(double alpha).

We will discuss dynamic memory allocation.

We will see standard C++ classes such as vector and string.

We will briefly discuss things such as operator overloading,
templates and inheritance.

Extra slides

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Namespaces
A namespace is a unique set of names (identifiers of variables,
functions, objects) and defines the context in which they are used.

E.g., variables declared outside of any function are in the global
namespace (they have global scope); and can be used anywhere.

A namespace can be defined with the namespace keyword:
namespace aNameSpace {

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

double x = 1.0;
}

To refer to this x in some other part of the program (outside of
its local scope), we can use

aNameSpace::x

:: is the scope resolution operator.

The std namespace

C++ provides automatically a namespace called std.

It contains all identifiers used in the standard C++ library (lots!),
including, e.g., cin, cout, endl, ...

To use, e.g., cout, endl, we can say:
using std::cout;
using std::endl;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

using std::endl;
int main(){
cout << "Hello" << endl;
...

or we can omit using and say
int main(){
std::cout << "Hello" << std::endl;
...

using namespace std;

Or we can simply say
using namespace std;
int main(){
cout << "Hello" << endl;
...

Although I do this in the lecture notes to keep them compact,
it is not a good idea in real code. The namespace std contains

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

it is not a good idea in real code. The namespace std contains
thousands of identifiers and you run the risk of a name clash.

This construction can also be used with user-defined namespaces:
using namespace aNameSpace;
int main(){
cout << x << endl; // uses aNameSpace::x
...

