
Computing and Statistical Data Analysis
Lecture 7

Arrays of objects

Memory allocation: static, automatic and dynamic

Memory leaks and dangling pointers

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Memory leaks and dangling pointers

Operator overloading

Static member functions

digression on destructors, copy constructors

Class templates

Arrays of objects
Just as we had arrays of int, double, etc., we can have arrays of
objects. For example, with our TwoVector class we could have:

TwoVector v[10];

cin >> n;
TwoVector u[n]; // size determined at runtime

TwoVector* aPtr = new TwoVector[n]; // default const.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

TwoVector* aPtr = new TwoVector[n]; // default const.
TwoVector* bPtr = new TwoVector[n](1.0, 2.0);

In the C++98 standard, the size of u and v must be known at
compile time. In C99 (implemented by gcc), array length can be
variable (set at runtime).

So when do we use new? (Question relevant not just to arrays.)
This depends on where and how long we want the object to live.

Memory allocation
We have seen two main ways to create variables or objects:

(1) by a declaration (automatic memory allocation):
int i;
double myArray[10];
TwoVector v;
TwoVector* vPtr;

(2) using new: (dynamic memory allocation):

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

(2) using new: (dynamic memory allocation):
vPtr = new TwoVector(); // creates object
TwoVector* uPtr = new TwoVector(); // on 1 line
double* a = new double[n]; // dynamic array
float* xPtr = new float(3.7);

The key distinction is whether or not we use the new operator.

Note that new always requires a pointer to the newed object.

The stack

When a variable is created by a “usual declaration”, i.e., without
new, memory is allocated on the “stack”.

When the variable goes out of scope, its memory is automatically
deallocated (“popped off the stack”).

...
{

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

{
int i = 3; // memory for i and obj
MyObject obj; // allocated on the stack
...

} // i and obj go out of scope,
// memory freed

The heap
To allocate memory dynamically, we first create a pointer, e.g.,

MyClass* ptr;

ptr itself is a variable on the stack. Then we create the object:

ptr = new MyClass(constructor args);

This creates the object (pointed to by ptr) from a pool of memory
called the “heap” (or “free store”).
When the object goes out of scope, ptr is deleted from the stack,

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

When the object goes out of scope, ptr is deleted from the stack,
but the memory for the object itself remains allocated in the heap:
{
MyClass* ptr = new MyClass(); // creates object
...

} // ptr goes out of scope here -- memory leak!

This is called a memory leak. Eventually all of the memory
available will be used up and the program will crash.

Deleting objects
To prevent the memory leak, we need to deallocate the object’s
memory before it goes out of scope:
{
MyClass* ptr = new MyClass(); // creates an object
MyClass* a = new MyClass[n]; // array of objects
...

delete ptr; // deletes the object pointed to by ptr

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

delete ptr; // deletes the object pointed to by ptr
delete [] a; // brackets needed for array of objects

}

For every new, there should be a delete.

For every new with brackets [], there should be a delete [] .

This deallocates the object’s memory. (Note that the pointer to the
object still exists until it goes out of scope.)

Dangling pointers
Consider what would happen if we deleted the object, but then still
tried to use the pointer:

MyClass* ptr = new MyClass(); // creates an object
...
delete ptr;
ptr->someMemberFunction(); // unpredictable!!!

After the object’s memory is deallocated, it will eventually be

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

After the object’s memory is deallocated, it will eventually be
overwritten with other stuff.

But the “dangling pointer” still points to this part of memory.

If we dereference the pointer, it may still give reasonable behaviour.
But not for long! The bug will be unpredictable and hard to find.
Some authors recommend setting a pointer to zero after the delete.
Then trying to dereference a null pointer will give a consistent error.

Static memory allocation
For completeness we should mention static memory allocation.
Static objects are allocated once and live until the program stops.

void aFunction(){
static bool firstCall = true;
if (firstCall) {
firstCall = false;
... // do some initialization

}

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

}
...

} // firstCall out of scope, but still alive

The next time we enter the function, it remembers the previous
value of the variable firstCall. (Not a very elegant initialization
mechanism but it works.)

This is only one of several uses of the keyword static in C++.

Operator overloading
Suppose we have two TwoVector objects and we want to add them.
We could write an add member function:

void TwoVector::add(TwoVector& v){
this->m_x += v.x();
this->m_y += v.y();

}

To use this function we would write, e.g.,

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

a.add(b);

It would be much easier if would could simply use a+b, but to do
this we need to define the + operator to work on TwoVector
objects.

This is called operator overloading. It can make manipulation of
the objects more intuitive.

Overloading an operator
We can overload operators either as member or non-member
functions. For member functions, we include in the class
declaration:
class TwoVector {
public:
...
TwoVector operator+ (const TwoVector&);
TwoVector operator- (const TwoVector&);

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

...

Instead of the function name we put the keyword operator
followed by the operator being overloaded.

When we say a+b, a calls the function and b is the argument.

The argument is passed by reference (quicker) and the declaration
uses const to protect its value from being changed.

Defining an overloaded operator
We define the overloaded operator along with the other member
functions, e.g., in TwoVector.cc:
TwoVector TwoVector::operator+ (const TwoVector& b) {
double cx = this->m_x + b.x();
double cy = this->m_y + b.y();
TwoVector c(cx, cy);
return c;

}

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

}

The function adds the x and y components of the object that called
the function to those of the argument.

It then returns an object with the summed x and y components.

Recall we declared x() and y(), as const. We did this so that
when we pass a TwoVector argument as const, we’re still able to
use these functions, which don’t change the object’s state.

Overloaded operators: asymmetric arguments
Suppose we want to overload * to allow multiplication of a
TwoVector by a scalar value:
TwoVector TwoVector::operator* (double b) {
double cx = this->m_x * b;
double cy = this->m_y * b;
TwoVector c(cx, cy);
return c;

}

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

}

Given a TwoVector v and a double s we can say e.g. v = v*s;

But how about v = s*v; ???

No! s is not a TwoVector object and cannot call the appropriate
member function (first operand calls the function).

We didn’t have this problem with + since addition commutes.

Overloading operators as non-member functions
We can get around this by overloading * with a non-member
function.

We could put the declaration in TwoVector.h (since it is related
to the class), but outside the class declaration.

We define two versions, one for each order:
TwoVector operator* (const TwoVector&, double b);

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

TwoVector operator* (double b, const TwoVector&);

For the definitions we have e.g. (other order similar):
TwoVector operator* (double b, const TwoVector& a) {
double cx = a.x() * b;
double cy = a.y() * b;
TwoVector c(cx, cy);
return c;

}

Restrictions on operator overloading
You can only overload C++’s existing operators:

Unary: + - * & ~ ! ++ -- -> ->*
Binary: + - * / & ^ & | << >>

+= -= *= /= %= ^= &= |= <<= >>=
< <= > >= == != && || , [] ()
new new[] delete delete[]

You cannot overload: . .* ?: ::

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Operator precedence stays same as in original.

Too bad -- cannot replace pow function with ** since this isn’t
allowed, and if we used ^ the precedence would be very low.

Recommendation is only to overload operators if this leads to more
intuitive code. Remember you can still do it all with functions.

You cannot overload: . .* ?: ::

A different “static”: static members
Sometimes it is useful to have a data member or member function
associated not with individual objects but with the class as a whole.

An example is a variable that counts the number of objects of a
class that have been created.

These are called static member functions/variables (yet another use
of the word static -- better would be “class-specific”). To declare:

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

of the word static -- better would be “class-specific”). To declare:

class TwoVector {
public:
...
static int totalTwoVecs();

private:
static int m_counter;

...
};

Static members, continued
Then in TwoVector.cc (note here no keyword static):

int TwoVector::m_counter = 0; // initialize

TwoVector::TwoVector(double x, double y){
m_x = x;
m_y = y;
m_counter++; // in all constructors

}

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

int TwoVector::totalTwoVecs() { return m_counter; }

Now we can count our TwoVectors. Note the function is called
with class-name:: and then the function name. It is connected to
the class, not to any given object of the class:
TwoVector a, b, c;
int vTot = TwoVector::totalTwoVecs();
cout << vTot << endl; // prints 3

Oops #1: digression on destructors
The totalTwoVec function doesn’t work very well, since we also
create a new TwoVector object when, e.g., we use the overloaded
+. The local object itself dies when it goes out of scope, but the
counter still gets incremented when the constructor is executed.

We can remedy this with a destructor, a special member function
called automatically just before its object dies. The name is ~
followed by the class name. To declare in TwoVector.h:

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

followed by the class name. To declare in TwoVector.h:
public:
~TwoVector(); // no arguments or return type

And then we define the destructor in TwoVector.cc :
TwoVector::~TwoVector(){ m_counter--; }

Destructors are good places for clean up, e.g., deleting anything
created with new in the constructor.

Oops #2: digression on copy constructors
The totalTwoVec function still doesn’t work very well, since we
should count an extra TwoVector object when, e.g., we say

TwoVector v; // this increments m_counter
TwoVector u = v; // oops, m_counter stays same

When we create/initialize an object with an assignment statement,
this calls the copy constructor, which by default just makes a copy.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

We need to write our own copy constructor to increment
m_counter. To declare (together with the other constructors):

TwoVector(const TwoVector&); // unique signature

It gets defined in TwoVector.cc :
TwoVector(const TwoVector& v) {
m_x = v.x(); m_y = v.y();
m_counter++;

}

Class templates
We defined the TwoVector class using double variables. But in
some applications we might want to use float.

We could cut/paste to create a TwoVector class based on floats
(very bad idea -- think about code maintenance).

Better solution is to create a class template, and from this we
create the desired classes.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

create the desired classes.

template <class T> // T stands for a type
class TwoVector {
public:
TwoVector(T, T); // put T where before we
T x(); // had double
T y();
...

};

Defining class templates
To define the class’s member functions we now have, e.g.,

template <class T>
TwoVector<T>::TwoVector(T x, T y){
m_x = x;
m_y = y;
m_counter++;

}

template <class T>

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

template <class T>
T TwoVector<T>::x(){ return m_x; }

template <class T>
void TwoVector<T>::setX(T x){
m_x = x;

}

With templates, class declaration must be in same file as
function definitions (put everything in TwoVector.h).

Using class templates
To use a class template, insert the desired argument:

TwoVector<double> dVec; // creates double version

TwoVector<float> fVec; // creates float version

TwoVector is no longer a class, it’s only a template for classes.

TwoVector<double> and TwoVector<float> are classes

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

TwoVector<double> and TwoVector<float> are classes
(sometimes called “template classes”, since they were made from
class templates).

Class templates are particularly useful for container classes, such
as vectors, stacks, linked lists, queues, etc. We will see this later
in the Standard Template Library (STL).

Wrapping up lecture 7

We’ve now seen a lot (most?) of the hard stuff. We’ve glossed
over some very subtle issues where you’ll have to go back, try
things out, and shout for help when it doesn’t work.

You can drop the words “heap” and “stack” at cocktail parties.

You can define static member functions (and static data members)
which pertain to the class, not any particular object.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

which pertain to the class, not any particular object.

You can overload operators and define class templates (or at least
you can recognize them when you see them).

In our final lecture we will take a quick tour through some
advanced features and useful tools.

