
Computing and Statistical Data Analysis
Lecture 8

STL and the Standard C++ Library
vector, string, ...

Inheritance (quick tour)

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Inheritance (quick tour)

Some tools:
compiling/linking with gmake

debugging with ddd

The Standard C++ Library
We’ve already seen parts of the standard library such as iostream
and cmath. Here are some more:

What you #include What it does

<algorithm> useful algorithms (sort, search, ...)
<complex> complex number class

<list> a linked list

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

<list> a linked list

<stack> a stack (push, pop, etc.)

<string> proper strings (better than C-style)

<vector> often used instead of arrays

Most of these define classes using templates, i.e., we can have a
vector of objects or of type double, int, float, etc. They form
what is called the Standard Template Library (STL).

Using vector
Here is some sample code that uses the vector class. Often a
vector is better than an array.

#include <vector>
using namespace std;
int main() {
vector<double> v; // uses template
double x = 3.2;
v.push_back(x); // element 0 is 3.2

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

v.push_back(x); // element 0 is 3.2
v.push_back(17.0); // element 1 is 17.0
vector<double> u = v; // assignment
int len = v.size();
for (int i=0; i<len; i++){
cout << v[i] << endl; // like an array

}
v.clear(); // remove all elements
...

Using string
Here is some sample code that uses the string class (much better
than C-style strings):

#include <string>
using namespace std;
int main() {
string a, b, c;
string s = "hello";
a = s; // assignment

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

a = s; // assignment
int len = s.length(); // now len = 5
bool sEmpty = s.empty(); // now sEmpty = false
b = s.substring(0,2); // first position is 0
cout << b << endl; // prints hel
c = s + " world"; // concatenation
s.replace(2, 3, "j!"); // replace 3 characters

// starting at 2 with j!
cout << s << endl; // hej!
...

Inheritance

Often we define a class which is similar to an existing one. For
example, we could have a class

class Animal {
public:
double weight();
double age();
...

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

...
private:
double m_weight;
double m_age;
...

};

Related classes
Now suppose the objects in question are dogs. We want

class Dog {
public:
double weight();
double age();
bool hasFleas();
void bark();

private:
double m_weight;

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

double m_weight;
double m_age;
bool m_hasFleas;
...

};

Dog contains some (perhaps many) features of the Animal class but
it requires a few extra ones.

The relationship is of the form “X is a Y”: a dog is an animal.

Inheritance
Rather than redefine a separate Dog class, we can derive it from
Animal. To do this we declare in Dog.h

#include "Animal.h"
class Dog : public Animal {
public:
bool hasFleas();
void bark();
...

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

...
private:
bool m_hasFleas;
...

};

Animal is called the “base class”, Dog is the “derived class”.

Dog inherits all of the public (and “protected”) members of Animal.
We only need to define hasFleas(), bark(), etc.

Polymorphism, virtual functions, etc.
We might redefine a member function of Animal to do or mean
something else in Dog. This is function “overriding”. (Contrast this
with function overloading.)

We could have age() return normal years for Animal, but “dog
years” for Dog. This is an example of polymorphism. The function
takes on different forms, depending on the type of object calling it.

We can also declare functions in the base class as "pure virtual" (or

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

We can also declare functions in the base class as "pure virtual" (or
"abstract"). In the declaration use the keyword virtual and set
equal to zero; we do not supply any definition for the function in
the base class:

virtual double age() = 0;

This would mean we cannot create an Animal object. A derived
class must define the function if it is to create objects.

Compiling and linking with gmake
For our short test programs it was sufficient to put the compile and
link commands in a short file (e.g. build.sh).

For large programs with many files, however, compiling and
linking can take a long time, and we should therefore recompile
only those files that have been modified.

This can be done with the Unix program make (gnu version gmake).

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

This can be done with the Unix program make (gnu version gmake).

Homepage www.gnu.org/software/make

Manual ~150 pages (many online mini-tutorials).

Widely used in High Energy Physics (and elsewhere).

Why we use gmake
Suppose we have hello.cc :

#include "goodbye.h"
int main() {
cout << "Hello world" << endl;
goodbye();

}

as well as goodbye.cc :

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

as well as goodbye.cc :

#include "goodbye.h"
using namespace std;
void goodbye() {
cout << "Good-bye world" << endl;

}

and its prototype in goodbye.h .

Simple example without gmake
Usually we compile with

g++ -o hello hello.cc goodbye.cc

which is really shorthand for compiling and linking steps:

Now suppose we modify goodbye.cc. To rebuild, really we only

g++ -c hello.cc
g++ -c goodbye.cc
g++ -o hello hello.o goodbye.o

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

Now suppose we modify goodbye.cc. To rebuild, really we only
need to recompile this file.

But in general it’s difficult to keep track of what needs to be
recompiled, especially if we change a header file.

Using date/time information from the files plus user supplied
information, gmake recompiles only those files that need to be and
links the program.

Simple example with gmake
The first step is to create a “makefile”. gmake looks in the current
directory for the makefile under the names GNUmakefile,
makefile and Makefile (in that order).

The makefile can contain several types of statements, the most
important of which is a “rule”. General format of a rule:

target : dependencies

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

command

The target is usually the name of a file we want to produce and the
dependencies are the other files on which the target depends.

On the next line there is a command which must always be
preceded by a tab character (spaces no good). The command tells
gmake what to do to produce the target.

Simple example with gmake, cont.
In our example we create a file named GNUmakefile with:

If we type gmake without an argument, then the first target listed is

hello : hello.o goodbye.o
g++ -o hello hello.o goodbye.o

hello.o : hello.cc goodbye.h
g++ -c hello.cc

goodbye.o : goodbye.cc goodbye.h
g++ -c goodbye.cc

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

If we type gmake without an argument, then the first target listed is
taken as the default, i.e., to build the program, simply type

gmake or gmake hello

We could also type e.g.
gmake goodbye.o

if we wanted only to compile goodbye.cc.

gmake refinements
In the makefile we can also define variables (i.e., symbols). E.g.,
rather than repeating hello.o goodbye.o we can define

objects = hello.o goodbye.o

hello : $(objects)
g++ -o hello $(objects)

...

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

When gmake encounters $(objects) it makes the substitution.

We can also make gmake figure out the command. We see that
hello.o depends on a source file with suffix .cc and a header file
with suffix .h. Provided certain defaults are set up right, it will
work if we say e.g.

hello.o : hello.cc goodbye.h

gmake for experts
makefiles can become extremely complicated and cryptic.

Often they are hundreds or thousands of lines long.

Often they are themselves not written by “humans” but rather
constructed by an equally obscure shell script.

The goal here has been to give you some feel for what gmake does
and how to work with makefiles provided by others.

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

and how to work with makefiles provided by others.

Often software packages are distributed with a makefile. You
might have to edit a few lines depending on the local set up
(probably explained in the comments) and then type gmake.

We will put some simple and generalizable examples on the
course web site.

Debugging your code
You should write and test your code in short incremental steps.
Then if something doesn’t work you can take a short step back
and figure out the problem.

For every class, write a short program to test its member
functions.

You can go a long way with cout. But, to really see what’s

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

You can go a long way with cout. But, to really see what’s
going on when a program executes, it’s useful to have a
debugging program.

The current best choice for us is probably ddd
(DataDisplayDebugger) which is effectively free (gnu license).

ddd is actually an interface to a lower level debugging program,
which can be gdb. If you don’t have ddd installed, try xxgdb.

Using ddd

The ddd homepage is www.gnu.org/software/ddd

There are extensive online tutorials, manuals, etc.

To use ddd, you must compile your code with the -g option:

g++ -g -o MyProg MyProg.cc

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

g++ -g -o MyProg MyProg.cc

Then type

ddd MyProg

You should see a window with your program’s source code and a
bunch of controls.

When you start ddd

From the ddd online manual:

Computing and Statistical Data Analysis
Glen Cowan
RHUL Physics

Running the program
Click a line of the program and then on “Break” to set a break point.
Then click on “Run”. The program will stop at the break point.

Computing and Statistical Data Analysis
Glen Cowan
RHUL Physics

Stepping through the program
To execute current line, click next.
Put cursor over a variable to see its value.
For objects, select it and click Display.

Computing and Statistical Data Analysis
Glen Cowan
RHUL Physics

You get the idea.
Refer to the online
tutorial and manual.

Wrapping up the C++ course

Considering we’ve only been at it 4 weeks, we’ve seen a lot:
All the main data types and control structures
How to work with files
Classes and objects
Dynamic memory allocation, etc., etc., etc.

OK, we’ve glossed over many details and to really use these things

Glen Cowan
RHUL Physics Computing and Statistical Data Analysis

OK, we’ve glossed over many details and to really use these things
you may have to refer back to the literature.

In addition we’ve seen the main elements of a realistic linux-based
programming environment, using tools such as gmake and ddd.

Next week we start probability and statistical data analysis. This
will give us many opportunities to develop and use C++ analysis
tools.

