Confidence Interval Basics

- Interval estimation
- Confidence interval from inverting a test
- Example: limits on mean of Gaussian
- Confidence intervals from the likelihood function

Confidence intervals by inverting a test

In addition to a 'point estimate' of a parameter we should report an interval reflecting its statistical uncertainty.

Confidence intervals for a parameter θ can be found by defining a test of the hypothesized value θ (do this for all θ):

Specify values of the data that are 'disfavoured' by θ (critical region) such that P (data in critical region $\mid \theta$) $\leq \alpha$ for a prespecified α, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ.
Now invert the test to define a confidence interval as:
set of θ values that are not rejected in a test of size α (confidence level CL is $1-\alpha$).

Relation between confidence interval and p-value

Equivalently we can consider a significance test for each hypothesized value of θ, resulting in a p-value, p_{θ}.

If $p_{\theta} \leq \alpha$, then we reject θ.

The confidence interval at $\mathrm{CL}=1-\alpha$ consists of those values of θ that are not rejected.
E.g. an upper limit on θ is the greatest value for which $p_{\theta}>\alpha$.

In practice find by setting $p_{\theta}=\alpha$ and solve for θ.
For a multidimensional parameter space $\boldsymbol{\theta}=\left(\theta_{1}, \ldots \theta_{M}\right)$ use same idea - result is a confidence "region" with boundary determined by $p_{\theta}=\alpha$.

Coverage probability of confidence interval

If the true value of θ is rejected, then it's not in the confidence interval. The probability for this is by construction (equality for continuous data):

$$
P(\text { reject } \theta \mid \theta) \leq \alpha=\text { type-I error rate }
$$

Therefore, the probability for the interval to contain or "cover" θ is
$P($ conf. interval "covers" $\theta \mid \theta) \geq 1-\alpha$
This assumes that the set of θ values considered includes the true value, i.e., it assumes the composite hypothesis $P(\boldsymbol{x} \mid H, \theta)$.

Example: upper limit on mean of Gaussian

When we test the parameter, we should take the critical region to maximize the power with respect to the relevant alternative(s).

Example: $x \sim \operatorname{Gauss}(\mu, \sigma) \quad$ (take σ known)
Test $H_{0}: \mu=\mu_{0}$ versus the alternative $H_{1}: \mu<\mu_{0}$
\rightarrow Put w_{μ} at region of x-space characteristic of low μ (i.e. at low x)

Equivalently, take the p-value to be

$$
p_{\mu_{0}}=P\left(x \leq x_{\mathrm{obs}} \mid \mu_{0}\right)=\int_{-\infty}^{x_{\mathrm{obs}}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(x-\mu_{0}\right)^{2} / 2 \sigma^{2}} d x=\Phi\left(\frac{x_{\mathrm{obs}}-\mu_{0}}{\sigma}\right)
$$

Upper limit on Gaussian mean (2)

To find confidence interval, repeat for all μ_{0}, i.e., set $p_{\mu 0}=\alpha$ and solve for μ_{0} to find the interval's boundary

This is an upper limit on μ, i.e., higher μ have even lower p-value and are in even worse agreement with the data.

Usually use $\Phi^{-1}(\alpha)=-\Phi^{-1}(1-\alpha)$ so as to express the upper limit as $x_{\text {obs }}$ plus a positive quantity. E.g. for $\alpha=0.05, \Phi^{-1}(1-0.05)=1.64$.

Approximate confidence intervals/regions from the likelihood function

Suppose we test parameter value(s) $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{N}\right)$ using the ratio

$$
\lambda(\boldsymbol{\theta})=\frac{L(\boldsymbol{\theta})}{L(\hat{\boldsymbol{\theta}})}
$$

$$
0 \leq \lambda(\theta) \leq 1
$$

Lower $\lambda(\theta)$ means worse agreement between data and hypothesized θ. Equivalently, usually define

$$
t_{\boldsymbol{\theta}}=-2 \ln \lambda(\boldsymbol{\theta})
$$

so higher t_{θ} means worse agreement between θ and the data.
p-value of $\boldsymbol{\theta}$ therefore

$$
p_{\boldsymbol{\theta}}=\int_{t_{\boldsymbol{\theta}, \mathrm{obs}}}^{\infty} f\left(t_{\boldsymbol{\theta}} \mid \boldsymbol{\theta}\right) d t_{\boldsymbol{\theta}}
$$

Confidence region from Wilks' theorem

Wilks' theorem says (in large-sample limit and provided certain conditions hold...)

$$
f\left(t_{\boldsymbol{\theta}} \mid \boldsymbol{\theta}\right) \sim \chi_{N}^{2}
$$

chi-square dist. with \# d.o.f. = $\#$ of components in $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{N}\right)$.

Assuming this holds, the p-value is

$$
p_{\boldsymbol{\theta}}=1-F_{\chi_{N}^{2}}\left(t_{\boldsymbol{\theta}} \mid \boldsymbol{\theta}\right) \leftarrow \text { set equal to } \alpha
$$

To find boundary of confidence region set $p_{\theta}=\alpha$ and solve for t_{θ} :

Recall also

$$
\begin{aligned}
t_{\boldsymbol{\theta}} & =F_{\chi_{N}^{2}}^{-1}(1-\alpha) \\
t_{\theta} & =-2 \ln \frac{L(\theta)}{L(\hat{\theta})}
\end{aligned}
$$

Confidence region from Wilks' theorem (cont.)

i.e., boundary of confidence region in θ space is where

$$
\ln L(\boldsymbol{\theta})=\ln L(\hat{\boldsymbol{\theta}})-\frac{1}{2} F_{\chi_{N}^{2}}^{-1}(1-\alpha)
$$

For example, for $1-\alpha=68.3 \%$ and $n=1$ parameter,

$$
F_{\chi_{1}^{2}}^{-1}(0.683)=1
$$

and so the 68.3\% confidence level interval is determined by

$$
\ln L(\theta)=\ln L(\hat{\theta})-\frac{1}{2}
$$

Same as recipe for finding the estimator's standard deviation, i.e.,
$\left[\hat{\theta}-\sigma_{\hat{\theta}}, \hat{\theta}+\sigma_{\hat{\theta}}\right]$ is a 68.3% CL confidence interval.

Example of interval from $\ln L(\theta)$

For $N=1$ parameter, $\mathrm{CL}=0.683, Q_{\alpha}=1$.

Multiparameter case

For increasing number of parameters, $\mathrm{CL}=1-\alpha$ decreases for confidence region determined by a given

$$
Q_{\alpha}=F_{\chi_{n}^{2}}^{-1}(1-\alpha)
$$

Q_{α}	$1-\alpha$				
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
1.0	0.683	0.393	0.199	0.090	0.037
2.0	0.843	0.632	0.428	0.264	0.151
4.0	0.954	0.865	0.739	0.594	0.451
9.0	0.997	0.989	0.971	0.939	0.891

Multiparameter case (cont.)

Equivalently, Q_{α} increases with n for a given $\mathrm{CL}=1-\alpha$.

$1 . \alpha$	\widehat{Q}_{α}				
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
0.683	1.00	2.30	3.53	4.72	5.89
0.90	2.71	4.61	6.25	7.78	9.24
0.95	3.84	5.99	7.82	9.49	11.1
0.99	6.63	9.21	11.3	13.3	15.1

