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Outline

Tuesday:

The Bayesian method

Bayesian assessment of uncertainties

Bayesian computation:  MCMC

Wednesday:

Bayesian limits

Bayesian model selection ("discovery")

Outlook for Bayesian methods in HEP
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Statistical data analysis at the terascale

Specific challenges for LHC analyses include

Huge data volume

Generally cannot trust MC prediction of backgrounds;
need to use data (control samples, sidebands...)

Lots of theory uncertainties, e.g., parton densities

People looking in many places ("look-elsewhere effect")

"5 sigma"

"4 sigma"

and expensive experiments, so we should make sure
the data analysis doesn't waste information.

High stakes



G. Cowan
RHUL Physics Frequently Bayesian  /  DESY Terascale School page 4

Dealing with uncertainty 

In particle physics there are various elements of uncertainty:

theory is not deterministic

quantum mechanics

random measurement errors

present even without quantum effects

things we could know in principle but don’t

e.g. from limitations of cost, time, ...

We can quantify the uncertainty using PROBABILITY
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A definition of probability 

Consider a set S with subsets A, B, ...

Kolmogorov
axioms (1933)

Also define conditional probability:
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Interpretation of probability
I.  Relative frequency

A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...

II.  Subjective probability
A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.
•   In particle physics  frequency interpretation often most useful,
    but subjective probability can provide more natural treatment of 
    non-repeatable phenomena:  
        systematic uncertainties, probability that Higgs boson exists,...
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Bayes’ theorem
From the definition of conditional probability we have

and

but , so

Bayes’ theorem

First published (posthumously) by the
Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53
(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 
P (0.117 < s < 0.121), 

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, interpretation of probability extended to
degree of belief (subjective probability).  Use this for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayesian methods can provide more natural treatment of  non-
repeatable phenomena:  
     systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes’ thm.)
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Statistical vs. systematic errors 
Statistical errors:  

How much would the result fluctuate upon repetition of the 
measurement?

Implies some set of assumptions to define probability of 
outcome of the measurement.

Systematic errors:

What is the uncertainty in my result due to 
uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty;
modelling of measurement apparatus.

Usually taken to mean the sources of error do not vary 
upon repetition of the measurement.  Often result from uncertain 
value of, e.g., calibration constants, efficiencies, etc.
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Systematic errors and nuisance parameters
Model prediction (including e.g. detector effects) 
never same as "true prediction" of the theory:

x (true value)

y 
(m

od
el

 v
al

ue
)

model:  

truth:

Model can be made to approximate better the truth by including
more free parameters.

systematic uncertainty ↔ nuisance parameters
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Example:  fitting a straight line

Data:

Model:  measured yi independent, Gaussian:

assume xi and i known.

Goal:  estimate 0 

(don’t care about 1).
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Correlation between

             causes errors

to increase.

Standard deviations from

tangent lines to contour

Frequentist approach
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The information on 1

improves accuracy of

Frequentist case with a measurement t1 of 1
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Bayesian method

We need to associate prior probabilities with 0 and 1, e.g.,

Putting this into Bayes’ theorem gives:

posterior    Q                  likelihood                prior

← based on previous 
     measurement

reflects ‘prior ignorance’, in any
case much broader than
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Bayesian method (continued)

Ability to marginalize over nuisance parameters is an important
feature of Bayesian statistics.

We then integrate (marginalize)  p(0, 1 | x) to find p(0 | x):

In this example we can do the integral (rare).  We find



G. Cowan
RHUL Physics Frequently Bayesian  /  DESY Terascale School page 17

Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than naive √n .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density
e.g. Gaussian centred
about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than naive

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  

if not, only take the step with probability 

If proposed step rejected, hop in place.
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Metropolis-Hastings caveats
Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try starting from a different
point and see if the result is similar.
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Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.
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Bayesian method with vague prior

Suppose we don’t have a previous measurement of 1 but
rather some vague information, e.g., a theorist tells us:

1 ≥ 0 (essentially certain);

1 should have order of magnitude less than 0.1 ‘or so’.  

Under pressure, the theorist sketches the following prior:

From this we will obtain posterior probabilities for 0 (next slide).

We do not need to get the theorist to ‘commit’ to this prior;
final result has ‘if-then’ character.
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Sensitivity to prior

Vary () to explore how extreme your prior beliefs would have 
to be to justify various conclusions (sensitivity analysis).

Try exponential with different
mean values...

Try different functional forms...
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A more general fit (symbolic)
Given measurements: 

and (usually) covariances:

Predicted value:

control variable parameters bias

Often take:

Minimize

Equivalent to maximizing L() » e2/2, i.e., least squares same 
as maximum likelihood using a Gaussian likelihood function. 

expectation value
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Its Bayesian equivalent

and use Bayes’ theorem:

To get desired probability for , integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator, 
same as from 2 = 2

min + 1.  (Back where we started!)

Take

Joint probability
for all parameters



G. Cowan
RHUL Physics Frequently Bayesian  /  DESY Terascale School page 26

The error on the error
Some systematic errors are well determined

Error from finite Monte Carlo sample

Some are less obvious

Do analysis in n ‘equally valid’ ways and
extract systematic error from ‘spread’ in results.

Some are educated guesses

Guess possible size of missing terms in perturbation series; 

vary renormalization scale

Can we incorporate the ‘error on the error’?

(cf. G. D’Agostini 1999; Dose & von der Linden 1999)
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A prior for bias b(b) with longer tails

Gaussian (s = 0)      P(|b| > 4sys)  =  6.3  10-5

s = 0.5                    P(|b| > 4sys)  =  6.5  10

b(
b)

b

Represents ‘error
on the error’; 

standard deviation 
of s(s) is s.
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A simple test
Suppose fit effectively averages four measurements.

Take sys = stat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(|y):

Usually summarize posterior p(|y) 
with mode and standard deviation:

experiment
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Simple test with inconsistent data

Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.

→ Error now connected to goodness-of-fit.

Posterior p(|y):

experiment

m
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Goodness-of-fit vs. size of error

In LS fit, value of minimized 2 does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high 2 corresponds to a larger error (and vice versa).

2000 repetitions of
experiment, s = 0.5,
here no actual bias.

po
st

er
io

r 



2

 from least squares
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Summary of lecture 1

The distinctive features of Bayesian statistics are:

       Subjective probability used for hypotheses (e.g. a parameter).

       Bayes' theorem relates the probability of data given H
       (the likelihood) to the posterior probability of H given data:

Requires prior 
probability for H

Bayesian methods often yield answers that are close (or identical)
to those of frequentist statistics, albeit with different interpretation.

This is not the case when the prior information is important
relative to that contained in the data.
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Extra slides 
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Some Bayesian references 
P. Gregory, Bayesian Logical Data Analysis for the Physical 
Sciences, CUP, 2005

D. Sivia, Data Analysis: a Bayesian Tutorial, OUP, 2006

S. Press, Subjective and Objective Bayesian Statistics:  Principles, 
Models and Applications, 2nd ed., Wiley, 2003

A. O’Hagan, Kendall’s, Advanced Theory of Statistics, Vol. 2B, 
Bayesian Inference, Arnold Publishers, 1994

A. Gelman et al., Bayesian Data Analysis, 2nd ed., CRC, 2004

W. Bolstad, Introduction to Bayesian Statistics, Wiley, 2004

E.T. Jaynes, Probability Theory:  the Logic of Science,  CUP, 2003
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Uncertainty from parametrization of PDFs

Try e.g. (MRST)

(CTEQ)or

The form should be flexible enough to describe the data;
frequentist analysis has to decide how many parameters are justified.

In a Bayesian analysis we can insert as many parameters as we
want, but constrain them with priors.

Suppose e.g. based on a theoretical bias for things not too bumpy,
that a certain parametrization ‘should hold to 2%’. 

How to translate this into a set of prior probabilites?
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Residual function

Try e.g. 
‘residual 
function’

where r(x) is something very flexible, e.g., superposition of

Bernstein polynomials, coefficients i:

 mathworld.wolfram.com

Assign priors for the i centred around 0, width chosen
to reflect the uncertainty in xf(x)  (e.g. a couple of percent).

→ Ongoing effort.


