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Outline of  GDC lectures
→ Tue. 14.3 Probability (Bayes vs. Frequentist)

Bayesian parameter and interval estimation

Wed. 15.3  Frequentist confidence regions and intervals

Thu.  16.3 Python software for frequentist and Bayesian 
confidence regions.

Fri.  17.3 Searches and discoveries using likelihoods
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A quick review of probability

Frequentist (A = outcome of
repeatable observation)

Subjective (A = hypothesis)

Conditional probability:

A and B are independent iff:

I.e. if A, B independent, then

E.g. rolling a die, 
outcome n = 1,2,...,6:
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Bayes’ theorem
Use definition of conditional probability and

→ (Bayes’ theorem)

If set of all outcomes S = ∪i Ai
with Ai disjoint, then law of total 
probability for P(B) says

so that Bayes’ theorem becomes

Bayes’ theorem holds regardless of how probability is 
interpreted (frequency, degree of belief...).

B ∩ Ai

Ai

B

S
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: x).

Probability = limiting frequency

Probabilities such as

P (string theory is true), 
P (0.117 < αs < 0.119), 
P (Biden wins in 2024),

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

Preferred theories (models, hypotheses, ...) are those  that 
predict a high probability for data “like” the data observed.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior
probabilities were π(H), then it says how these probabilities
should change in the light of the data.

No general prescription for priors (subjective!)
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Bayesian parameter estimation
Example:  fitting a straight line

Data:

Model: yi independent and all follow yi ~ Gauss(μ(xi ), σi )

assume xi and σi known.

Goal:  estimate θ0
Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)



8G. Cowan / RHUL Physics RWTH Aachen online course / GDC lecture 1

Connection with Maximum Likelihood 
and Least Squares

Both the Bayesian a Frequentist approaches require the 
likelihood, P(data|parameters) = P(y|θ) = L(θ0, θ1).

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)



9G. Cowan / RHUL Physics RWTH Aachen online course / GDC lecture 1

Probability in the Bayesian approach

In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter θ.

Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

Our experiment has data y, → likelihood P(y|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data y:

Posterior pdf p(θ|y) contains all our knowledge about θ.
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Assigning prior probabilities
We need to associate prior probabilities with θ0 and θ1, e.g.,

← ‘non-informative’, in any
case much broader than L(θ0)

← suppose knowledge of θ0 has 
no influence on knowledge of θ1

Suppose we have an independent control measurement of θ1, 
e.g., t1 ~ Gauss(θ1, σt1).  Take “prior” to mean after t1, before y:

Likelihood for control
measurement t1

Ur = “primordial”
prior 

prior after t1,
before y



11G. Cowan / RHUL Physics RWTH Aachen online course / GDC lecture 1

Posterior for parameters from Bayes’ theorem
Putting the ingredients into Bayes’ theorem gives:

posterior    ∝ likelihood         ✕ prior

Note here the likelihood only reflects the measurements y.

The information from the control measurement t1 has been put 
into the prior for θ1.

We would get the same result using the likelihood P(y,t|θ0,θ1) and 
the constant  “Ur-prior” for θ1.
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Marginalizing the posterior pdf

For this example, numbers come out same as in frequentist 
approach, but interpretation different.  

We then integrate (marginalize)  p(θ0,θ1|y) to find p(θ0 |y):

In this example we can do the integral (rare).  We find

(same as for maximum likelihood)

same as from maximum likelihood
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Marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

→ Use Markov Chain Monte Carlo (MCMC) 

Bayesian Analysis Toolkit: https://github.com/bat/BAT.jl

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional θ but look only at 
distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm

1)  Start at some point 

2)  Generate  

Proposal density q(θ; θ0)
e.g. Gaussian centred
about θ0

3)  Form test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate

Goal:  given an n-dimensional pdf p(θ) up to a proportionality 
constant, generate a sequence of points θ1, θ2, θ3,... 
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

Still works if p(θ) is known only as a proportionality, which is 
usually what we have from Bayes’ theorem: p(θ|x) ∝ p(x|θ)π(θ).

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:  q(θ; θ0) = q(θ0; θ)

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher p(θ), take it;  
if not, only take the step with probability p(θ)/p(θ0).
If proposed step rejected, repeat the current point.
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Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Normalized histogram of θ0 gives 
its marginal posterior pdf:
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
an “expert” says it should be positive and not too much  greater 
than 0.1 or so, i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

Events could be from signal process or from background –
we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events (suppose known)

Goal is to make inference about s, e.g., given an observed n, set an 
upper limit on s.
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The Bayesian approach to limits
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this 
reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Normalize posterior pdf p(θ|x) to unity, then integrate to give 
interval with any desired probability content (or “credibility level” 
CL or 1 − α), e.g., CL = 95%:
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Bayesian prior for Poisson parameter

Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0.

Could try to reflect ‘prior ignorance’ with e.g. 

Not normalized; can be OK provided p(n|s) dies off quickly for large s.

Not invariant under change of parameter — if we had used instead a 
flat prior for a nonlinear function of s, then this would imply a non-
flat prior for s.

Doesn’t really reflect a reasonable degree of belief, but often used as 
a point of reference; or viewed as a recipe for producing an interval 
whose frequentist properties can be studied (e.g., coverage 
probability, which will depend on true s). 
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Bayesian upper limit with flat prior for s
Put Poisson likelihood and flat prior into Bayes’ theorem:

Normalize to unit area:

Upper limit sup determined by

upper incomplete
gamma function
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Bayesian interval with flat prior for s
Solve to find limit sup:

For special case b = 0, Bayesian upper limit with flat prior
numerically same as one-sided frequentist case (‘coincidence’). 

where

quantile of chi-square distribution
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Bayesian interval with flat prior for s
For b > 0 Bayesian limit is everywhere greater than the (one 
sided) frequentist upper limit.

Never goes negative.  Doesn’t depend on b if n = 0.
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Priors from formal rules 
We took the prior for a Poisson mean to be constant to reflect a lack 
of prior knowledge and noted this was not invariant under change of 
parameter.

Because of difficulties in encoding a vague degree of belief
in a prior, one often attempts to derive the prior from formal rules,
e.g., to satisfy certain invariance principles or to provide maximum
information gain for a certain set of measurements.

Often called “objective priors” 
Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent
possible extreme cases).   

In Objective Bayesian analysis, can use the intervals in a
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce
an interval with a given coverage probability. 



25G. Cowan / RHUL Physics RWTH Aachen online course / GDC lecture 1

Jeffreys prior
According to Jeffreys’ rule, take prior according to

where

is the Fisher information matrix.

One can show that this leads to inference that is invariant under
a transformation of parameters in the following sense:

Start with the Jeffreys prior for θ:  πθ(θ) ~ √(det I(θ))

Use it in Bayes’ theorem to find:
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Jeffreys prior (2)

Now consider a function η(θ).  The posterior for η is

Alternatively, start with η and use its Jeffreys’ prior:

Use this in Bayes’ theorem:

One can show that Jeffreys’ prior results in the same P(η|x) in 
both cases.  For details (single-parameter case) see:
http://www.pp.rhul.ac.uk/~cowan/stat/notes/JeffreysInvariance.pdf



27G. Cowan / RHUL Physics RWTH Aachen online course / GDC lecture 1

Jeffreys prior for Poisson mean

Suppose n ~ Poisson(μ).  To find the Jeffreys’ prior for μ,

So e.g. for μ = s + b, this means the prior π(s) ~ 1/√(s + b),  which 
depends on b.  But this is not designed as a degree of belief  about s.
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Posterior pdf for Poisson mean
From Bayes’ theorem, 

Flat, π(μ) = const.

Jeffreys, π(μ) ~ 1/√μ

In both cases, posterior is special case of gamma distribution.
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Upper limit for Poisson mean

Flat prior:

Jeffreys prior:

= 7.75

= 7.03

where P-1 is the inverse of the normalized lower incomplete 
gamma function (see scipy.special)

To find upper limit at CL = 1-α, solve

n=3,
CL=0.95
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Summing up...
Bayesian methods allow one to associate a probability with a 
hypothesis, e.g., a hypothesized parameter.

The final result consists of the posterior probability for the 
hypothesis (or parameter) given the observed data (or a 
summary statistic obtained from it, e.g., a limit).

Requires one to specify prior probabilities.

Bayesian computation involves integrals over parameter
space (MCMC).

Sometimes (often?) use Bayesian methods to obtain a result,
then “forget” its Bayesian origins and exploit its frequentist 
properties.



31G. Cowan / RHUL Physics RWTH Aachen online course / GDC lecture 1

Extra slides
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Priors from formal rules (cont.) 
For a review of priors obtained by formal rules see, e.g.,

Formal priors have not been widely used in Particle Physics, but 
there has been interest in this direction, especially the reference 
priors of Bernardo and Berger; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high
energy physics, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111.

D. Casadei, Reference analysis of the signal + background model 
in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270.


