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https://xkcd.com/2110/ Randall Munroe, xkcd.com 



G. Cowan  Beijing / 29 August 2019 / Errors on Errors 3 

Outline 
Intro, history, motivation 
Using measurements with “known” systematic errors: 

 Least Squares (BLUE) 
Allowing for uncertainties in the systematic errors 

 Estimates of sys errors ~ Gamma 
Single-measurement model 

 Asymptotics, Bartlett correction 
Curve fitting, averages 

 Confidence intervals, goodness-of-fit, outliers 
Discussion and conclusions 

Details in:  G. Cowan, Statistical Models with Uncertain Error 
Parameters, Eur. Phys. J. C (2019) 79:133, arXiv:1809.05778 
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Curve Fitting History:  Least Squares 
Method of Least Squares by Laplace, Gauss, Legendre, Galton... 

C.F. Gauss, Theoria Combinationis Observationum Erroribus 
Minimis Obnoxiae, Commentationes Societatis Regiae Scientiarium 
Gottingensis Recectiores Vol. V (MDCCCXXIII). 

To fit curve f (x;θ) to data yi ± σi,  
adjust parameters θ = (θ1,..., θM) 
to minimize 

Assumes σi known. 

yi ± σi 
f (x;θ) 
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Least Squares ← Maximum Likelihood 

Tails of Gaussian fall off very fast; points away from the 
curve (“outliers”) have strong influence on parameter 
estimates. 

Method of Least Squares follows from method of Maximum 
Likelihood if independent measured yi ~ Gaussian(f (xi;θ), σi) 
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Goodness of fit 
If the hypothesized model f (x;θ) is correct, χ2

min should 
follow a chi-square distribution for N (# meas.) – M (# fitted par.) 
degrees of freedom; expectation value = N – M.   
 
Suppose initial guess for model is:      f (x;θ) = θ0 + θ1 x 

 χ2
min =  20.9, 

N – M = 9 – 2 = 7, 
so goodness of fit is “poor”. 
 
This is an indication that the 
model is inadequate, and thus 
the values it predicts will  
have a “systematic error”. 
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Systematic errors ↔ nuisance parameters 

Estimators for all parameters correlated, and as a consequence 
the presence of the nuisance parameters inflates the statistical 
errors of the parameter(s) of interest. 

Solution: fix the model, generally by inserting additional  
adjustable parameters (“nuisance parameters”).  Try, e.g., 

χ2
min  = 3.5, N – M = 6 

For some point in the 
enlarged parameter space 
we hope the model is 
now ~correct. 

Sys. error gone? 

f (x;θ) = θ0 + θ1 x + θ2 x2 
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Uncertainty of fitted parameters 
Suppose parameter of interest µ, nuisance parameter θ, 
confidence interval for µ from  “profile likelihood”: 

Width of interval in usual LS fit independent of goodness of fit.  
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Least Squares for Averaging 
= fit of horizontal line 

Raymond T. Birge,  
Probable Values of the 
General Physical Constants 
(as of January 1, 1929), 
Physical Review 
Supplement, Vol 1, Number 
1, July 1929 

Forerunner of the  
Particle Data Group 

http://bancroft.berkeley.edu/Exhibits/physics/learning01.html 
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Developments of LS for Averaging 
Much work in HEP and elsewhere on application/extension of 
least squares to the problem of averaging or meta-analysis, e.g., 

A. C. Aitken, On Least Squares and Linear Combinations of  
Observations, Proc. Roy. Soc. Edinburgh 55 (1935) 42. 

L. Lyons, D. Gibaut and P. Clifford, How to Combine Correlated  
Estimates of a Single Physical Quantity,  Nucl. Instr. Meth. A270  
(1988) 110. 

A. Valassi, Combining Correlated Measurements of Several  
Different Physical Quantities, Nucl. Instr. Meth. A500 (2003) 391. 

R. Nisius, On the combination of correlated estimates of a physics  
observable,  Eur. Phys.  J.  C 74 (2014) 3004. 

R. DerSimonian and N. Laird, Meta-analysis in clinical trials,  
Controlled Clinical Trials 7 (1986) 177-188. 
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“Errors on Errors” 

→  PDG “scale factor method” ≈ scale sys. errors with common  
factor until χ2

min = appropriate no. of degrees of freedom. 
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Errors on theory errors, e.g., in QCD 
Uncertainties related to theoretical 
predictions are notoriously difficult 
to quantify, e.g., in QCD may come 
from variation of renormalization 
scale in some “appropriate range”. 

Problematic e.g. for αs        → 

If, e.g., some (theory) errors are 
underestimated, one may obtain poor 
goodness of fit, but size of confidence  
interval from usual recipe will not  
reflect this. 

An outlier with an underestimated  
error bar can have an inordinately  
strong influence on the average. 

M. Tanabashi et al. (Particle Data Group),  
Phys. Rev. D 98, 030001 (2018) 
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Formulation of the problem 
Suppose measurements y have probability (density) P(y|µ,θ),  

 µ = parameters of interest 
 θ = nuisance parameters 

To provide info on nuisance parameters, often treat their best  
estimates u as indep. Gaussian distributed r.v.s., giving likelihood 

or log-likelihood (up to additive const.) 
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Systematic errors and their uncertainty 

Often the θi could represent a systematic bias and its best 
estimate ui in the real measurement is zero. 

The σu,i are the corresponding “systematic errors”. 

Sometimes σu,i is well known, e.g., it is itself a statistical error 
known from sample size of a control measurement. 

Other times the ui are from an indirect measurement, Gaussian 
model approximate and/or the σu,i  are not exactly known. 

Or sometimes σu,i is at best a guess that represents an 
uncertainty in the underlying model (“theoretical error”). 

In any case we can allow that the σu,i are not known in general 
with perfect accuracy. 
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Gamma model for variance estimates 
Suppose we want to treat the systematic errors as uncertain, 
so let the σu,i be adjustable nuisance parameters. 

Suppose we have estimates si for σu,i  or equivalently vi = si
2, is an 

estimate of σu,i
2. 

Model the vi as independent and gamma distributed: 

Set α and β so that they give desired relative uncertainty r  in σu. 

Similar to method 2 in W.J. Browne and D. Draper, Bayesian 
Analysis, Volume 1, Number 3 (2006), 473-514. 
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Distributions of v and s = √v 

For α, β of  gamma distribution,  

relative “error on error” 
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Motivation for gamma model 
If one were to have n independent observations u1,..,un,  with all  
u ~ Gauss(θ, σu

2),  and we use the sample variance 

to estimate σu
2, then (n-1)v/σu

2 follows a chi-square distribution 
for n-1 degrees of freedom, which is a special case of the 
gamma distribution (α = n/2, β = 1/2).  (In general one doesn’t 
have a sample of ui values, but if this were to be how v was  
estimated, the gamma model would follow.) 
 
Furthermore choice of the gamma distribution for v allows one 
to profile over the nuisance parameters σu

2 in closed form and  
leads to a simple profile likelihood. 
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Likelihood for gamma error model 

Treated like data:       y1,...,yL        (the primary measurements) 
        u1,...,uN        (estimates of nuisance par.) 
        v1,...,vN        (estimates of variances 
              of estimates of NP) 

Adjustable parameters:    µ1,...,µM  (parameters of interest) 
        θ1,...,θN        (nuisance parameters) 
        σu,1,...,σu,N  (sys. errors = std. dev. of 
      of NP estimates) 

Fixed parameters:           r1,...,rN          (rel. err. in estimate of σu,i) 
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Profiling over systematic errors 
We can profile over the σu,i in closed form 

which gives the profile log-likelihood (up to additive const.) 

In limit of small ri and vi → σu,i
2, the log terms revert back to the  

quadratic form seen with known σu,i. 
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Equivalent likelihood from Student’s t 

We can arrive at same likelihood by defining 

Since ui ~ Gauss and vi ~ Gamma, zi ~ Student’s t 

with  

Resulting likelihood same as profile Lʹ(µ,θ) from gamma model  
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Single-measurement model 
As a simplest example consider 

y ~ Gauss(µ, σ2),     

v ~ Gamma(α, β), 

Test values of µ with tµ  = -2 ln λ(µ) with  
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Distribution of tµ 

From Wilks’ theorem, in the asymptotic limit we should 
find tµ ~ chi-squared(1). 

Here “asymptotic limit” means all estimators ~Gauss, which 
means r → 0.  For increasing r, clear deviations visible: 
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Distribution of tµ  (2) 
For larger r, breakdown of asymptotics gets worse: 

Values of r ~ several tenths are relevant so we cannot in general 
rely on asymptotics to get confidence intervals, p-values, etc. 
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Bartlett corrections 
One can modify tµ defining 

such that the new statistic’s distribution is better approximated  
by chi-squared for nd degrees of freedom (Bartlett, 1937). 

For this example E[tµ] ≈ 1 + 3r2  +  2r4 works well: 
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Bartlett corrections (2) 
Good agreement for r ~ several tenths out to √tµʹ ~ several, i.e., 
good for significances of several sigma: 
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68.3% CL confidence interval for µ 
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Curve fitting, averages 
Suppose independent  
yi ~ Gauss, i = 1,...,N, with 

µ are the parameters of interest in the fit function φ(x;µ),  

θ are bias parameters constrained by control measurements  
ui ~ Gauss(θi, σu,i), so that if σu,i are known we have 



G. Cowan  Beijing / 29 August 2019 / Errors on Errors 28 

Profiling over θi with known σu,i 

Profiling over the bias parameters θi for known σu,i gives usual 
least-squares (BLUE)  

Widely used technique for curve fitting in Particle Physics. 

Generally in real measurement, ui = 0. 

Generalized to case of correlated yi and ui by summing  
statistical and systematic covariance matrices. 
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Curve fitting with uncertain σu,i 

Suppose now σu,i
2  are adjustable parameters with gamma distributed 

estimates vi. 

Retaining the θi but profiling over σu,i
2 gives 

Profiled values of θi from solution to cubic equations 
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Goodness of fit 

Can quantify goodness of fit with statistic 

where Lʹ (φ,θ) has an adjustable φi for each yi (the saturated 
model). 

Asymptotically should have q ~ chi-squared(N-M). 

For increasing ri, may need Bartlett correction or MC. 
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Distributions of q 
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Distributions of Bartlett-corrected q ́
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Example:  average of two measurements 

Increased discrepancy 
between values to be  
averaged gives larger 
interval. 

Interval length saturates 
at ~level of absolute  
discrepancy between  
input values. 

MINOS interval (= approx. confidence interval) based on 

with 

relative error  
on sys. error 
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Same with interval from pµ = α with 
nuisance parameters profiled at µ 
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Coverage of intervals 
Consider previous average of  
two numbers but now generate 
for i = 1, 2 data values  
     yi ~ Gauss(µ, σy,i) 
     ui ~ Gauss(0, σu,i) 
     vi ~ Gamma(σu,i, ri) 
     σy,i = σu,i = 1 
and look at the probability  
that the interval covers the 
true value of µ. 

Coverage stays reasonable 
to r ~ 0.5, even not bad 
for Profile Construction 
out to r ~ 1. 
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Sensitivity of average to outliers 
Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with 
stat. and sys. errors of 1.0, and suppose negligible error on error 
(here take r = 0.01 for all). 
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Sensitivity of average to outliers (2) 
Now suppose the measurement at 10 was actually at 20: 

Estimate pulled up to 12.0, size of confidence interval ~unchanged 
(would be exactly unchanged with r → 0). 

“outlier” 
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Average with all  r = 0.2 
If we assign to each measurement r = 0.2,  

Estimate still at 10.00, size of interval moves 0.63 → 0.65 
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Average with all  r = 0.2 with outlier 
Same now with the outlier (middle measurement 10 → 20) 

Estimate →10.75 (outlier pulls much less). 

Half-size of interval → 0.78 (inflated because of bad g.o.f.). 
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Naive approach to errors on errors 
Naively one might think that the error on the error in the previous 
example could be taken into account conservatively by inflating  
the systematic errors, i.e.,  

But this gives  

without outlier (middle meas. 10) 

with outlier (middle meas. 20) 

So the sensitivity to the outlier is not reduced and the size of the 
confidence interval is still independent of goodness of fit. 
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Correlated uncertainties 
The phrase “correlated uncertainties” usually means that a single 
nuisance parameter affects the distribution (e.g., the mean) of more  
than one measurement.    

For example, consider measurements y, parameters of interest µ, 
nuisance parameters θ with  

That is, the θi are defined here as contributing to a bias and 
the (known) factors Rij determine how much θj affects yi. 

As before suppose one has independent control measurements  
ui~ Gauss(θi, σui). 
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Correlated uncertainties  (2) 

The total bias of yi can be defined as  

which can be estimated with 

These estimators are correlated having covariance 

In this sense the present method treats “correlated uncertainties”, 
i.e., the control measurements ui are independent, but nuisance 
parameters affect multiple measurements, and thus bias estimates 
are correlated. 
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Discussion / Conclusions 
Gamma model for variance estimates gives confidence intervals 
that increase in size when the data are internally inconsistent, 
and gives decreased sensitivity to outliers (known property of  
Student’s t based regression). 

Equivalence with Student’s t model, ν = 1/2r2 degrees of freedom. 

Simple profile likelihood – quadratic terms replaced by logarithmic: 



G. Cowan  Beijing / 29 August 2019 / Errors on Errors 44 

Discussion /  Conclusions (2) 
Asymptotics can break for increased error-on-error, may need  
Bartlett correction or MC.  

Method assumes that meaningful ri values can be assigned 
and is valuable when systematic errors are not well known but 
enough “expert opinion” is available to do so. 

Alternatively one could try to fit a global r to all systematic 
errors, analogous to PDG scale factor method or meta-analysis 
à la DerSimonian and Laird.  (→ future work). 

Could also use e.g. as “stress test” – crank up the ri values 
until significance of result degrades and ask if you really trust 
the assigned systematic errors at that level. 

Decisions on new facilities require one to know how 
accurately important parameters have and will be measured; 
it’s important to get this right. 
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Extra slides 
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Gamma model for estimates of variance 
Suppose the estimated variance v was obtained as the sample 
variance from n observations of a Gaussian distributed bias  
estimate u. 

In this case one can show v is gamma distributed with  

We can relate α and β to the relative uncertainty r in the systematic 
uncertainty as reflected by the standard deviation of the sampling 
distribution of s,  σs 
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Exact relation between r parameter 
and relative error on error 

r parameter defined as:  

v ~ Gamma(α, β) so s = √v follows a Nakagami distribution 
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Exact relation between r parameter 
and relative error on error (2) 

The exact relation between the error and the error rs and 
the parameter r is therefore  

→  rs ≈ r good for r ⪅ 1. 
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PDG scale factor 

Suppose we do not want to take the quoted errors as 
known constants.   Scale the variances by a factor ϕ, 

The likelihood  
function becomes 

The estimator for µ is the same as before; for ϕ ML gives  

which has a bias;  is unbiased. 

The variance of µ is inflated by ϕ: ^ 
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Bayesian approach 

Given measurements:  

and (usually) covariances: 

Predicted value: 

control variable parameters bias 

Frequentist approach: 

Minimize 

expectation value 
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Its Bayesian equivalent 

and use Bayes’ theorem: 

To get desired probability for θ, integrate (marginalize) over b: 

→ Posterior is Gaussian with mode same as least squares estimator,  
          σθ  same as from χ2 = χ2

min + 1.  (Back where we started!) 

Take 

Joint probability 
for all parameters 



Bayesian approach with non-Gaussian prior πb(b) 

Suppose now the experiment is characterized by 

where si is an (unreported) factor by which the systematic error is  
over/under-estimated. 

Assume correct error for a Gaussian πb(b) would be siσi
sys, so 

Width of σs(si) reflects 
‘error on the error’. 



Error-on-error function πs(s) 
A simple unimodal probability density for 0 < s < 1 with  
adjustable mean and variance is the Gamma distribution: 

Want e.g. expectation value  
of 1 and adjustable standard  
Deviation σs , i.e.,  

mean = b/a 
variance = b/a2 

In fact if we took πs (s) ~ inverse Gamma, we could find πb(b) 
in closed form (cf. D’Agostini, Dose, von Linden).  But Gamma 
seems more natural & numerical treatment not too painful. 

s 



Prior for bias πb(b) now has longer tails 

Gaussian (σs = 0)      P(|b| > 4σsys)  =  6.3 × 10-5 

σs = 0.5                    P(|b| > 4σsys)  =  0.65% 

b 



A simple test 
Suppose a fit effectively averages four measurements. 

 Take σsys = σstat = 0.1, uncorrelated. 

Case #1: data appear compatible Posterior p(µ|y): 

Usually summarize posterior p(µ|y)  
with mode and standard deviation: 

experiment 

m
ea

su
re

m
en

t

µ
p(

µ|
y)



Simple test with inconsistent data 
Case #2: there is an outlier 

→ Bayesian fit less sensitive to outlier.  See also 

Posterior p(µ|y): 

experiment 

m
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m
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t

µ

p(
µ|

y)



Goodness-of-fit vs. size of error 
In LS fit, value of minimized χ2 does not affect size 
of error on fitted parameter. 
 
In Bayesian analysis with non-Gaussian prior for systematics, 
a high χ2 corresponds to a larger error (and vice versa). 

2000 repetitions of 
experiment, σs = 0.5, 
here no actual bias. 

χ2 

σµ from least squares 

post- 
erior


