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Reminder about statistical tests 

Consider test of a parameter µ, e.g., proportional to cross section. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Test statistics and p-values 
Often construct a test statistic, qµ, which reflects the level 
of agreement between the data and the hypothesized value µ. 

For examples of statistics based on the profile likelihood ratio, 
see, e.g., CCGV arXiv:1007.1727 (the “Asimov” paper). 

Usually define qµ such that higher values represent increasing  
incompatibility with the data, so that the p-value of µ is: 

Equivalent formulation of test:  reject µ if pµ < α. 

pdf of qµ assuming µ observed value of qµ 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

 Can give upper limit µup, i.e., the largest value of µ  
 not rejected, i.e., the upper edge of the confidence interval. 

The interval (and limit) depend on the choice of the test, which is 
often based on considerations of power. 
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Power of a statistical test 
But where to define critical region?  Usually put this where the 
test has a high power with respect to an alternative hypothesis µ′. 

The power of the test of µ with respect to the alternative µ′ is 
the probability to reject µ if µ′ is true: 

(M = Mächtigkeit, 
мощность) 

E.g., for an upper limit, maximize the power with respect to 
the alternative consisting of µ′  < µ. 

Other types of tests not based directly on power (e.g., likelihood  
ratio).  
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Choice of test for limits 
Often we want to ask what values of µ can be excluded on  
the grounds that the implied rate is too high relative to what is 
observed in the data. 

To do this take the alternative to correspond to lower values of µ. 

The critical region to test µ thus contains low values of the data. 

 → One-sided (e.g., upper) limit. 

In other cases we want to exclude µ on the grounds that some other 
measure of incompatibility between it and the data exceeds some 
threshold (e.g., likelihood ratio wrt two-sided alternative). 

The critical region can contain both high and low data values.   

 → Two-sided or unified (Feldman-Cousins) intervals. 



I.e. for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 
For purposes of setting an upper limit on µ use 

where 
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 
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Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  We use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 
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Previous ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure. 
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The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ = 1 (s+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 
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The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     
f (Q|s+b)     

ps+b pb 
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The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(one minus the p-value of the b-only hypothesis, i.e., 

Define: 

Reject s+b  
hypothesis if: Reduces “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (q|b)     f (q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 
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Feldman-Cousins unified intervals 
The initial motivation for Feldman-Cousins (unified) confidence 
intervals was to eliminate null intervals. 

The F-C limits are based on a likelihood ratio for a test of µ  
with respect to the alternative consisting of all other allowed values 
of µ (not just, say, lower values). 

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of µ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit. 

This means that when a value of µ is excluded, it is because 
there is a probability α for the data to fluctuate either high or low 
in a manner corresponding to less compatibility as measured by 
the likelihood ratio. 
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Power Constrained Limits (PCL) 
CLs has been criticized because the coverage probability of the 
upper limit is greater than the nominal CL = 1 - α by an amount  
that is not readily apparent (but can be computed). 

Therefore we have proposed an alternative method for protecting 
against exclusion with little/no sensitivity, by regarding a value of 
µ to be excluded if: 

Here the measure of sensitivity is the power of the test of µ 
with respect to the alternative µ = 0: 
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Constructing PCL 
First compute the distribution under assumption of the  
background-only (µ = 0) hypothesis of the “usual” upper limit µup  
with no power constraint. 

The power of a test of µ with respect to µ = 0 is the fraction of 
times that µ is excluded (µup < µ): 

Find the smallest value of µ (µmin), such that the power is at 
least equal to the threshold Mmin. 

The Power-Constrained Limit is: 
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PCL for upper limit with Gaussian measurement  

Suppose    ~ Gauss(µ, σ), goal is to set upper limit on µ. 

Define critical region for test of µ as 

This gives (unconstrained) upper limit: 

µ̂

inverse of standard Gaussian 
cumulative distribution 
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Power M0(µ) for Gaussian measurement  
The power of the test of µ with respect to the alternative µ′  = 0 is: 

standard Gaussian 
cumulative distribution 
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Spurious exclusion when µ fluctuates down 
Requiring the power be at least Mmin 

implies that the smallest µ to which one is sensitive is 

If one were to use the unconstrained limit, values of µ at or  
below µmin would be excluded if 

 ̂

That is, one excludes µ < µmin when the unconstrained limit  
fluctuates too far downward. 
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Choice of minimum power 
Choice of Mmin is convention.  Formally it should be large relative 
to α (5%).   Earlier we have proposed 

because in Gaussian example this means that one applies the 
power constraint if the observed limit fluctuates down by one  
standard deviation. 

In fact the distribution of µup is often roughly Gaussian, so we 
call this a “1σ” (downward) fluctuation and use Mmin = 0.16  
regardless of the exact distribution of µup.  

For the Gaussian example, this gives µmin = 0.64σ, i.e., the lowest  
limit is similar to the intrinsic resolution of the measurement (σ). 
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Upper limits for Gaussian problem 
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Coverage probability for Gaussian problem 
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PCL as a function of, e.g., mH 

PCL 

Here power below 
threshold; do not  
exclude. 
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Some reasons to consider increasing Mmin 
Mmin is supposed to be “substantially” greater than α (5%). 

So Mmin = 16% is fine for 1 – α = 95%, but if we ever want  
1 – α = 90%,  then16% is not “large” compared to 10%;  
µmin = 0.28σ starts to look small relative to the intrinsic resolution  
of the measurement.  Not an issue if we stick to 95% CL. 

PCL with Mmin = 16%  is often substantially lower than CLs. 
This is because of the conservatism of CLs (see coverage). 

But goal is not to get a lower limit per se, rather  

●  to use a test with higher power in those regions where one 
    feels there is enough sensitivity to justify exclusion and  

● to allow for easy communication of coverage (95% for 
    µ ≥ µmin; 100% otherwise). 
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Aggressive conservatism 
It could be that owing to practical constraints, certain systematic 
uncertainties are over-estimated in an analysis; this could 
be justified by wanting to be conservative. 

The consequence of this will be that the +/-1 sigma bands of 
the unconstrained limit are broader than they otherwise would be. 

If the unconstrained limit fluctuates low, it could be that the 
PCL limit, constrained at the -1sigma band, is lower than it 
would be had the systematics been estimated correctly. 

  conservative = aggressive 

If the power constraint Mmin is at 50%, then by inflating the  
systematics the median of the unconstrained limit is expected to  
move less, and in any case upwards, i.e., it will lead to a less 
strong limit (as one would expect from “conservatism”). 
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A few further considerations  
Obtaining PCL requires the distribution of unconstrained limits, 
from which one finds the Mmin (16%, 50%) percentile. 

In some analyses this can entail calculational issues that 
are expected to be less problematic for Mmin = 50% than for 16%. 

Analysts produce anyway the median limit, even in absence of 
the error bands, so with Mmin = 50%  the burden on the analyst is  
reduced somewhat (but one would still want the error bands). 

We therefore recently proposed moving Mmin to 50%. 
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PCL with Mmin = 0.16, 0.50 (and other limits) 

With Mmin = 50%, power constraint is applied half the time.   

This is somewhat contrary to the original spirit of preventing a 
 “lucky” fluctuation from leading to a limit that is small compared  
to the intrinsic resolution of the measurement. 

But PCL still lower than CLs most of the time (e.g., x > -0.4).  
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Treatment of nuisance parameters 
In most problems, the data distribution is not uniquely specified 
by µ but contains nuisance parameters θ. 

This makes it more difficult to construct an (unconstrained) 
interval with correct coverage probability for all values of θ, 
so sometimes approximate methods used (“profile construction”). 

More importantly for PCL, the power M0(µ) can depend on θ. 
So which value of θ to use to define the power? 

Since the power represents the probability to reject µ if the 
true value is µ = 0, to find the distribution of µup we take the  
values of θ that best agree with the data for µ = 0: 

May seem counterintuitive, since the measure of sensitivity 
now depends on the data.  We are simply using the data to choose 
the most appropriate value of θ where we quote the power. 
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Negatively Biased Relevant Subsets 
Consider again x ~ Gauss(µ, σ) and use this to find limit for µ. 

We can find the conditional probability for the limit to cover µ  
given x in some restricted range, e.g., x < c for some constant c. 

This conditional coverage probability may be greater or less than  
1 – α for different values of µ (the value of which is unkown). 

But suppose that the conditional coverage is less than 1 – α for  
all values of µ.  The region of x where this is true is a  
Negatively  Biased Relevant Subset. 

 Recent studies by Bob Cousins (CMS) and 
 Ofer Vitells (ATLAS) related to earlier publications, 
 especially, R. Buehler, Ann. Math. Sci., 30 (4) (1959) 845. 
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Betting Games 
So what’s wrong if the limit procedure has NBRS? 

Suppose you observe x, construct the confidence interval and assert  
that an interval thus constructed covers the true value of the  
parameter with probability 1 – α .   

This means you should be willing to accept a bet at odds α : 1 – α  
that the interval covers the true parameter value. 

Suppose your opponent accepts the bet if x is in the NBRS, and  
declines the bet otherwise.  On average, you lose, regardless of 
the true (and unknown) value of µ. 

With the “naive” unconstrained limit, if your opponent only accepts  
the bet when x < –1.64σ, (all values of µ excluded) you always lose! 

(Recall the unconstrained limit based on the likelihood ratio never  
excludes µ = 0, so if that value is true, you do not lose.) 
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NBRS for unconstrained upper limit 

Maximum wrt µ is less than 
1-α → Negatively biased 
relevant subsets. 

N.B. µ = 0 is never excluded 
for unconstrained limit based 
on likelihood-ratio test, so at 
that point coverage = 100%, 
hence no NBRS. 

For the unconstrained upper limit (i.e., CLs+b) the conditional 
probability for the limit to cover µ given x < c is: 

← 1 - α 
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(Adapted) NBRS for PCL 

Coverage goes to 100% for   
µ <µmin, therefore no NBRS.  

Note one does not have max 
conditional coverage ≥ 1-α 
for all µ > µmin (“adapted 
conditional coverage”).  But 
if one conditions on µ, no 
limit would satisfy this.  

For PCL, the conditional probability to cover  µ given x < c is: 

← 1 - α 
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Conditional coverage for CLs, F-C 
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Summary and conclusions 
With a “usual” confidence limit, a large downward fluctuation 
can lead to exclusion of parameter values to which one has 
little or no sensitivity (will happen 5% of the time). 

PCL solves this problem by separating the parameter space into 
regions within which one has/hasn’t sufficient sensitivity as given 
by the probability to reject µ if background-only model is true. 

 Recommendation for ATLAS:  power M0(µ) ≥ 0.5. 

Within region with sufficient sensitivity, an upper limit can be set 
with a one-sided test (highest power) and exact 1 – α coverage. 

It is important to report both the constrained and unconstrained 
limits, so one can see where the power constraint comes into play. 

Procedure easily adapted to problems with nuisance parameters  
(quote power at estimated values of nuisance parameters for µ = 0). 


