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Statistical data analysis at the LHC

Specific challenges for LHC analyses include

Huge data volume

Generally cannot trust MC prediction of backgrounds;
need to use data (control samples, sidebands...)

Lots of theory uncertainties, e.g., parton densities

People looking in many places ("look-elsewhere effect")

"5 sigma"

"4 sigma"

and expensive experiments, so we should make sure
the data analysis doesn't waste information.

High stakes
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Dealing with uncertainty 

In particle physics there are various elements of uncertainty:

theory is not deterministic

quantum mechanics

random measurement errors

present even without quantum effects

things we could know in principle but don’t

e.g. from limitations of cost, time, ...

We can quantify the uncertainty using PROBABILITY
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A definition of probability 

Consider a set S with subsets A, B, ...

Kolmogorov
axioms (1933)

Also define conditional probability:
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Interpretation of probability
I.  Relative frequency

A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...

II.  Subjective probability
A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.
•   In particle physics  frequency interpretation often most useful,
    but subjective probability can provide more natural treatment of 
    non-repeatable phenomena:  
        systematic uncertainties, probability that Higgs boson exists,...
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Bayes’ theorem
From the definition of conditional probability we have

and

but , so

Bayes’ theorem

First published (posthumously) by the
Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53
(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 
P (0.117 < s < 0.121), 

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, interpretation of probability extended to
degree of belief (subjective probability).  Use this for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayesian methods can provide more natural treatment of  non-
repeatable phenomena:  
     systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes’ thm.)
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Statistical vs. systematic errors 
Statistical errors:  

How much would the result fluctuate upon repetition of the 
measurement?

Implies some set of assumptions to define probability of 
outcome of the measurement.

Systematic errors:

What is the uncertainty in my result due to 
uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty;
modelling of measurement apparatus.

Usually taken to mean the sources of error do not vary 
upon repetition of the measurement.  Often result from uncertain 
value of, e.g., calibration constants, efficiencies, etc.
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Systematic errors and nuisance parameters
Model prediction (including e.g. detector effects) 
never same as "true prediction" of the theory:

x (true value)

y 
(m

od
el

 v
al

ue
)

model:  

truth:

Model can be made to approximate better the truth by including
more free parameters.

systematic uncertainty ↔ nuisance parameters
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Example:  fitting a straight line

Data:

Model:  measured yi independent, Gaussian:

assume xi and i known.

Goal:  estimate 0 

(don’t care about 1).
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Correlation between

             causes errors

to increase.

Standard deviations from

tangent lines to contour

Frequentist approach
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The information on 1

improves accuracy of

Frequentist case with a measurement t1 of 1
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Bayesian method

We need to associate prior probabilities with 0 and 1, e.g.,

Putting this into Bayes’ theorem gives:

posterior    Q                  likelihood                prior

← based on previous 
     measurement

reflects ‘prior ignorance’, in any
case much broader than
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Bayesian method (continued)

Ability to marginalize over nuisance parameters is an important
feature of Bayesian statistics.

We then integrate (marginalize)  p(0, 1 | x) to find p(0 | x):

In this example we can do the integral (rare).  We find
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Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than naive √n .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 
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Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.
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Bayesian method with vague prior

Suppose we don’t have a previous measurement of 1 but
rather some vague information, e.g., a theorist tells us:

1 ≥ 0 (essentially certain);

1 should have order of magnitude less than 0.1 ‘or so’.  

Under pressure, the theorist sketches the following prior:

From this we will obtain posterior probabilities for 0 (next slide).

We do not need to get the theorist to ‘commit’ to this prior;
final result has ‘if-then’ character.
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Sensitivity to prior

Vary () to explore how extreme your prior beliefs would have 
to be to justify various conclusions (sensitivity analysis).

Try exponential with different
mean values...

Try different functional forms...
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A more general fit (symbolic)
Given measurements: 

and (usually) covariances:

Predicted value:

control variable parameters bias

Often take:

Minimize

Equivalent to maximizing L() » e2/2, i.e., least squares same 
as maximum likelihood using a Gaussian likelihood function. 

expectation value
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Its Bayesian equivalent

and use Bayes’ theorem:

To get desired probability for , integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator, 
same as from 2 = 2

min + 1.  (Back where we started!)

Take

Joint probability
for all parameters
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The error on the error
Some systematic errors are well determined

Error from finite Monte Carlo sample

Some are less obvious

Do analysis in n ‘equally valid’ ways and
extract systematic error from ‘spread’ in results.

Some are educated guesses

Guess possible size of missing terms in perturbation series; 

vary renormalization scale

Can we incorporate the ‘error on the error’?

(cf. G. D’Agostini 1999; Dose & von der Linden 1999)
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A prior for bias b(b) with longer tails

Gaussian (s = 0)      P(|b| > 4sys)  =  6.3  10-5

s = 0.5                    P(|b| > 4sys)  =  6.5  10

b(
b)

b

Represents ‘error
on the error’; 

standard deviation 
of s(s) is s.
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A simple test
Suppose fit effectively averages four measurements.

Take sys = stat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(|y):

Usually summarize posterior p(|y) 
with mode and standard deviation:

experiment

m
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re
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t


p(

|y
)
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Simple test with inconsistent data

Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.

→ Error now connected to goodness-of-fit.

Posterior p(|y):

experiment
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
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Goodness-of-fit vs. size of error

In LS fit, value of minimized 2 does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high 2 corresponds to a larger error (and vice versa).

2000 repetitions of
experiment, s = 0.5,
here no actual bias.

po
st

er
io

r 



2

 from least squares
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Uncertainty from parametrization of PDFs

Try e.g. (MRST)

(CTEQ)or

The form should be flexible enough to describe the data;
frequentist analysis has to decide how many parameters are justified.

In a Bayesian analysis we can insert as many parameters as we
want, but constrain them with priors.

Suppose e.g. based on a theoretical bias for things not too bumpy,
that a certain parametrization ‘should hold to 2%’. 

How to translate this into a set of prior probabilites?
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Residual function

Try e.g. 
‘residual 
function’

where r(x) is something very flexible, e.g., superposition of

Bernstein polynomials, coefficients i:

 mathworld.wolfram.com

Assign priors for the i centred around 0, width chosen
to reflect the uncertainty in xf(x)  (e.g. a couple of percent).

→ Ongoing effort.
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Frequentist discovery, p-values

To discover e.g. the Higgs, try to reject the background-only 
(null) hypothesis (H0).

Define a statistic t whose value reflects compatibility of data
with H0.

p-value = Prob(data with ≤ compatibility with H0 when 
             compared to the data we got | H0 )

For example, if high values of t mean less compatibility,

If p-value comes out small, then this is evidence against the 
background-only hypothesis → discovery made!
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Significance from p-value

Define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

TMath::Prob

TMath::NormQuantile
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When to publish

HEP folklore is to claim discovery when p = 2.85  10-7,
corresponding to a significance Z = 5.

This is very subjective and really should depend on the 
prior probability of the phenomenon in question, e.g.,

         phenomenon        reasonable p-value for discovery
D0D0 mixing ~0.05
Higgs ~ 10-7  (?)
Life on Mars ~10

Astrology 

Note some groups have defined 5 to refer to a two-sided
fluctuation, i.e., p = 5.7  10-7
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Bayesian model selection (‘discovery’)

no Higgs

Higgs

The probability of hypothesis H0 relative to its complementary
alternative H1 is often given by the posterior odds:

Bayes factor B01 prior odds

The Bayes factor is regarded as measuring the weight of 
evidence of the data in support of H0 over H1.

Interchangeably use B10 = 1/B01
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Assessing Bayes factors

One can use the Bayes factor much like a p-value (or Z value).

There is an “established” scale, analogous to our 5 rule:

B10 Evidence against H0

--------------------------------------------
1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Very strong

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.

11 May 07:  Not clear how useful this scale is for HEP.
3 Sept 07:    Upon reflection & PHYSTAT07 discussion, seems 
                    like an intuitively useful complement to p-value.
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Rewriting the Bayes factor

Suppose we have models Hi, i = 0, 1, ...,

each with a likelihood

and a prior pdf for its internal parameters 

so that the full prior is

where                         is the overall prior probability for Hi. 

The Bayes factor comparing Hi and Hj can be written 
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Bayes factors independent of P(Hi)

For Bij we need the posterior probabilities marginalized over
all of the internal parameters of the models:

Use Bayes
theorem

So therefore the Bayes factor is

The prior probabilities pi = P(Hi) cancel.

Ratio of  marginal 
likelihoods
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Numerical determination of Bayes factors

Both numerator and denominator of Bij are of the form

‘marginal likelihood’

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC).

Harmonic Mean (and improvements)
Importance sampling
Parallel tempering (~thermodynamic integration)
...

See e.g. 
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Harmonic mean estimator

E.g., consider only one model and write Bayes theorem as:

() is normalized to unity so integrate both sides,

Therefore sample  from the posterior via MCMC and estimate m 
with one over the average of 1/L (the harmonic mean of L).

posterior
expectation
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Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable;
formally infinite variance (!).  Gelfand & Dey propose variant:

Rearrange Bayes thm; multiply 
both sides by arbitrary pdf f():

Integrate over  :

Improved convergence if tails of f() fall off faster than L(x|)()

Note harmonic mean estimator is special case f() = ().
.



G. Cowan
RHUL Physics Bayesian statistics at the LHC  /  Cambridge seminar page 42

Importance sampling

Need pdf f() which we can evaluate at arbitrary  and also
sample with MC.

The marginal likelihood can be written

Best convergence when f() approximates shape of L(x|)().

Use for f() e.g. multivariate Gaussian with mean and covariance
estimated from posterior (e.g. with MINUIT).



G. Cowan
RHUL Physics Bayesian statistics at the LHC  /  Cambridge seminar page 43

Bayes factor computation discussion

Also can use method of parallel tempering; see e.g.

Harmonic mean OK for very rough estimate.

I had trouble with all of the methods based on posterior sampling.

Importance sampling worked best, but may not scale well to higher 
dimensions. 

Lots of discussion of this problem in the literature, e.g.,
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Bayesian Higgs analysis

N independent channels, count
ni events in search regions:

Expected number of signal events:
( is global parameter,  = 1 for SM).

Consider a fixed Higgs mass and assume SM branching ratios Bi. 

Suggested method:  constrain  with limit up; consider mH 

excluded if upper limit up < 1.0.

For discovery, compute Bayes factor for H0 : = 0 vs. H1 : = 1 

Constrain expected background
bi with sideband measurements:
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Parameters of Higgs analysis
E.g. combine cross section, branching ratio, luminosity, efficiency
into a single factor :

Systematics in any of the factors can be described by a prior for ,
use e.g. Gamma distribution.  For now ignore correlations, but 
these would be present e.g. for luminosity error:

ai, bi from nominal value i,0 and relative error ri=i / i,0 :
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Bayes factors for Higgs analysis

The Bayes factor B10 is

Compute this using a fixed  for H1, i.e., () = (′), 
then do this as a function of ′.  Look in particular at  = 1.

Take numbers from VBF paper for 10 fb, mH = 130 GeV:

ljj was for 30 fb,
in paper; divided by 3
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Bayes factors for Higgs analysis: results (1) 

Create data set by hand with ni ~ nearest integer (i + bi), i.e., = 1:
n1 =22, n2 =22, n3 = 4.

For the sideband measurements mi, choose desired b/b, use this to

set size of sideband  (i.e. b/b = 0.1 → m = 100).

B10 for / = 0.1, 

different values of b/b.,

as a function of 
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Bayes factors for Higgs analysis: results (2) 

B10 for b/b = 0.1, 

different values of /,

as a function of 

Effect of uncertainty in i (e.g., in the efficiency): 
 = 1 no longer gives a fixed si, but a smeared out distribution.

→ lower peak value of B10.  
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Bayes factors for Higgs analysis: results (3) 

Or try data set with ni ~ nearest integer bi, i.e., = 0:

n1 =9, n2 =10, n3 = 2. Used b/b = 0.1,  /, = 0.1.

Here the SM  = 1
is clearly disfavoured,
so we set a limit on 
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Posterior pdf for  , upper limits (1)

Here done with (improper) uniform prior,  > 0.
(Can/should also vary prior.)   
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Posterior pdf for  , upper limits (2)
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Outlook for Bayesian methods in HEP 
Bayesian methods allow (indeed require) prior information about
the parameters being fitted.

This type of prior information can be difficult to 
incorporate into a frequentist analysis

This will be particularly relevant when estimating uncertainties on
predictions of LHC observables that may stem from theoretical 
uncertainties, parton densities based on inconsistent data, etc.

Prior ignorance is not well defined.  If that’s what you’ve got,
don’t expect Bayesian methods to provide a unique solution.

Try a reasonable variation of priors -- if that yields
large variations in the posterior, you don’t have much
information coming in from the data.

You do not have to be exclusively a Bayesian or a Frequentist
Use the right tool for the right job
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Extra slides 
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Some Bayesian references 
P. Gregory, Bayesian Logical Data Analysis for the Physical 
Sciences, CUP, 2005

D. Sivia, Data Analysis: a Bayesian Tutorial, OUP, 2006

S. Press, Subjective and Objective Bayesian Statistics:  Principles, 
Models and Applications, 2nd ed., Wiley, 2003

A. O’Hagan, Kendall’s, Advanced Theory of Statistics, Vol. 2B, 
Bayesian Inference, Arnold Publishers, 1994

A. Gelman et al., Bayesian Data Analysis, 2nd ed., CRC, 2004

W. Bolstad, Introduction to Bayesian Statistics, Wiley, 2004

E.T. Jaynes, Probability Theory:  the Logic of Science,  CUP, 2003
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The Bayesian approach to limits

In Bayesian statistics need to start with ‘prior pdf’ (), this 
reflects degree of belief about  before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf  p(| x) to give interval with any desired
probability content.  

For e.g. Poisson parameter 95% CL upper limit from
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Analytic formulae for limits
There are a number of papers describing Bayesian limits
for a variety of standard scenarios

Several conventional priors
Systematics on efficiency, background
Combination of channels

and (semi-)analytic formulae and software are provided.

But for more general cases we need to use numerical methods 
(e.g. L.D. uses importance sampling).
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Example:  Poisson data with background

Count n events, e.g., in fixed time or integrated luminosity.

s = expected number of signal events

b = expected number of background events

n ~ Poisson(s+b):

Sometimes b known, other times it is in some way uncertain.

Goal:  measure or place limits on s, taking into 
consideration the uncertainty in b.

Widely discussed in HEP community, see e.g. proceedings of
PHYSTAT meetings, Durham, Fermilab, CERN workshops...
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Bayesian prior for Poisson parameter

Include knowledge that s ≥0 by setting prior (s) = 0 for s<0.

Often try to reflect ‘prior ignorance’ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead
a flat prior for, say, the mass of the Higgs boson, this would 
imply a non-flat prior for the expected number of Higgs events.

Doesn’t really reflect a reasonable degree of belief, but often used
as a point of reference;

or viewed as a recipe for producing an interval whose frequentist
properties can be studied (coverage will depend on true s). 
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Bayesian interval with flat prior for s

Solve numerically to find limit sup.

For special case b = 0, Bayesian upper limit with flat prior
numerically same as classical case (‘coincidence’). 

Otherwise Bayesian limit is
everywhere greater than
classical (‘conservative’).

Never goes negative.

Doesn’t depend on b if n = 0.
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Upper limit versus b

b

If n = 0 observed, should upper limit depend on b?
Classical:  yes
Bayesian:  no
FC:  yes

Feldman & Cousins, PRD 57 (1998) 3873
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Coverage probability of confidence intervals
Because of discreteness of Poisson data, probability for interval
to include true value in general > confidence level (‘over-coverage’)
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Bayesian limits with uncertainty on b
Uncertainty on b goes into the prior, e.g.,

Put this into Bayes’ theorem,

Marginalize over b, then use p(s|n) to find intervals for s
with any desired probability content.

Controversial part here is prior for signal s(s) 
(treatment of nuisance parameters is easy).
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Discussion on limits 

Different sorts of limits answer different questions.  
A frequentist confidence interval does not (necessarily)
answer, “What do we believe the parameter’s value is?”

Coverage — nice, but crucial?

Look at sensitivity, e.g., E[sup | s = 0].

Consider also:
politics, need for consensus/conventions;
convenience and ability to combine results, ...

For any result, consumer will compute (mentally or otherwise):

Need likelihood (or summary thereof). consumer’s prior
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density
e.g. Gaussian centred
about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than naive

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  

if not, only take the step with probability 

If proposed step rejected, hop in place.
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Metropolis-Hastings caveats
Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try it again with 10 times 
more points.


