Statistics for HEP

Lecture 2: Discovery and Limits

http://indico.cern.ch/conferenceDisplay.py?confId=162087

International School Cargèse August 2012

Glen Cowan
Physics Department
Royal Holloway, University of London

g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Outline

Lecture 1: Introduction and basic formalism
Probability, statistical tests, parameter estimation.

→ Lecture 2: Discovery and Limits

Asymptotic formulae for discovery/limits
Exclusion without experimental sensitivity, CLs, etc.
Bayesian limits
The Look-Elsewhere Effect

Recap on statistical tests

Consider test of a parameter μ , e.g., proportional to signal rate.

Result of measurement is a set of numbers x.

To define test of μ , specify *critical region* w_{μ} , such that probability to find $x \in w_{\mu}$ is not greater than α (the *size* or *significance level*):

$$P(\mathbf{x} \in w_{\mu}|\mu) \leq \alpha$$

(Must use inequality since x may be discrete, so there may not exist a subset of the data space with probability of exactly α .)

Equivalently define a p-value p_{μ} such that the critical region corresponds to $p_{\mu} \le \alpha$.

Often use, e.g., $\alpha = 0.05$.

If observe $x \in w_{\mu}$, reject μ .

Large-sample approximations for prototype analysis using profile likelihood ratio

Search for signal in a region of phase space; result is histogram of some variable *x* giving numbers:

$$\mathbf{n} = (n_1, \dots, n_N)$$

Assume the n_i are Poisson distributed with expectation values

$$E[n_i] = \mu s_i + b_i$$

strength parameter

where

$$s_i = s_{\rm tot} \int_{{\rm bin}\,i} f_s(x;\pmb{\theta}_s)\,dx\,, \qquad b_i = b_{\rm tot} \int_{{\rm bin}\,i} f_b(x;\pmb{\theta}_b)\,dx\,.$$
 signal background

Prototype analysis (II)

Often also have a subsidiary measurement that constrains some of the background and/or shape parameters:

$$\mathbf{m}=(m_1,\ldots,m_M)$$

Assume the m_i are Poisson distributed with expectation values

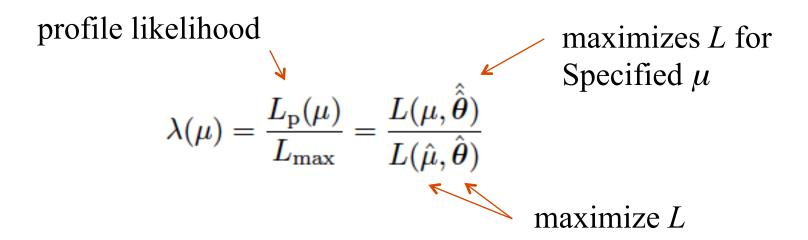
$$E[m_i] = u_i(\boldsymbol{\theta})$$
 nuisance parameters $(\boldsymbol{\theta}_{\rm s}, \, \boldsymbol{\theta}_{\rm b}, b_{\rm tot})$

Likelihood function is

$$L(\mu, \boldsymbol{\theta}) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}$$

The profile likelihood ratio

Base significance test on the profile likelihood ratio:



The likelihood ratio of point hypotheses gives optimum test (Neyman-Pearson lemma); statistic above is near optimal.

Advantage of $\lambda(\mu)$ is that in large sample limit, $f(-2\ln\lambda(\mu)|\mu)$ approaches a chi-square pdf for 1 degree of freedom (Wilks thm).

Test statistic for discovery

Try to reject background-only ($\mu = 0$) hypothesis using

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases}$$

i.e. here only regard upward fluctuation of data as evidence against the background-only hypothesis.

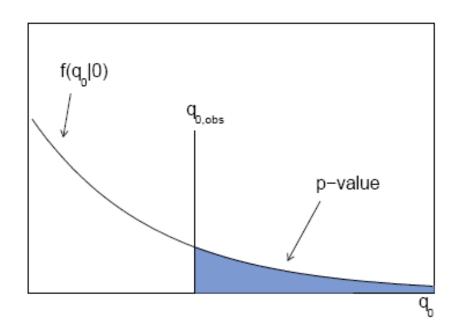
Note that even though here physically $\mu \ge 0$, we allow $\hat{\mu}$ to be negative. In large sample limit its distribution becomes Gaussian, and this will allow us to write down simple expressions for distributions of our test statistics.

p-value for discovery

Large q_0 means increasing incompatibility between the data and hypothesis, therefore p-value for an observed $q_{0,\mathrm{obs}}$ is

$$p_0 = \int_{q_{0,\text{obs}}}^{\infty} f(q_0|0) \, dq_0$$

will get formula for this later



From *p*-value get equivalent significance,

$$Z = \Phi^{-1}(1-p)$$

Test statistic for upper limits

For purposes of setting an upper limit on μ one may use

$$q_{\mu} = \begin{cases} -2\ln\lambda(\mu) & \hat{\mu} \leq \mu \\ 0 & \hat{\mu} > \mu \end{cases} \quad \text{where} \quad \lambda(\mu) = \frac{L(\mu, \hat{\boldsymbol{\theta}})}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})}$$

Note for purposes of setting an upper limit, one does not regard an upwards fluctuation of the data as representing incompatibility with the hypothesized μ .

From observed
$$q_{\mu}$$
 find p -value: $p_{\mu} = \int_{q_{\mu, \text{obs}}}^{\infty} f(q_{\mu}|\mu) dq_{\mu}$

95% CL upper limit on μ is highest value for which p-value is not less than 0.05.

Distribution of q_0 in large-sample limit

Assuming approximations valid in the large sample (asymptotic) limit, we can write down the full distribution of q_0 as

$$f(q_0|\mu') = \left(1 - \Phi\left(\frac{\mu'}{\sigma}\right)\right)\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}\exp\left[-\frac{1}{2}\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)^2\right]$$

The special case $\mu' = 0$ is a "half chi-square" distribution:

$$f(q_0|0) = \frac{1}{2}\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}e^{-q_0/2}$$

In large sample limit, $f(q_0|0)$ independent of nuisance parameters; $f(q_0|\mu')$ depends on nuisance parameters through σ .

Cumulative distribution of q_0 , significance

From the pdf, the cumulative distribution of q_0 is found to be

$$F(q_0|\mu') = \Phi\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)$$

The special case $\mu' = 0$ is

$$F(q_0|0) = \Phi\left(\sqrt{q_0}\right)$$

The *p*-value of the $\mu = 0$ hypothesis is

$$p_0 = 1 - F(q_0|0)$$

Therefore the discovery significance Z is simply

$$Z = \Phi^{-1}(1 - p_0) = \sqrt{q_0}$$

Distribution of q_{μ} in large-sample limit

$$f(q_{\mu}|\mu') = \Phi\left(\frac{\mu' - \mu}{\sigma}\right)\delta(q_{\mu}) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_{\mu}}}\exp\left[-\frac{1}{2}\left(\sqrt{q_{\mu}} - \frac{(\mu - \mu')}{\sigma}\right)^{2}\right]$$

$$f(q_{\mu}|\mu) = \frac{1}{2}\delta(q_{\mu}) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_{\mu}}}e^{-q_{\mu}/2}$$

$$F(q_{\mu}|\mu') = \Phi\left(\sqrt{q_{\mu}} - \frac{(\mu - \mu')}{\sigma}\right)$$

$$p_{\mu} = 1 - F(q_{\mu}|\mu) = 1 - \Phi\left(\sqrt{q_{\mu}}\right)$$

Independent of nuisance parameters.

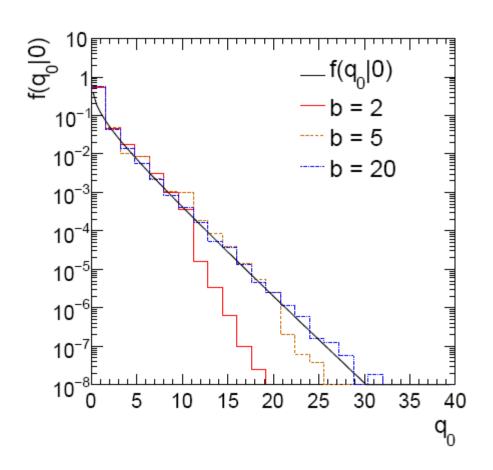
Monte Carlo test of asymptotic formula

$$n \sim \text{Poisson}(\mu s + b)$$

$$m \sim \text{Poisson}(\tau b)$$

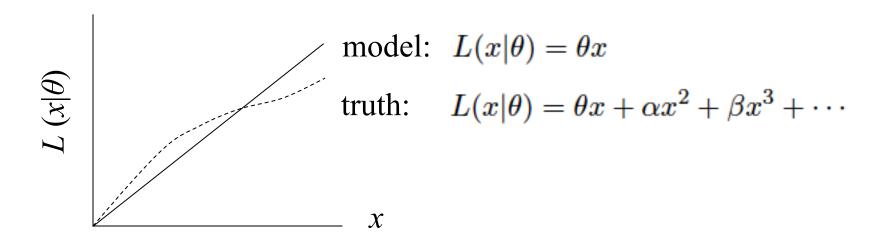
Here take $\tau = 1$.

Asymptotic formula is good approximation to 5σ level ($q_0 = 25$) already for $b \sim 20$.



Nuisance parameters

In general our model of the data is not perfect:



Can improve model by including additional adjustable parameters.

$$L(x|\theta) \to L(x|\theta,\nu)$$

Nuisance parameter ↔ systematic uncertainty. Some point in the parameter space of the enlarged model should be "true".

Presence of nuisance parameter decreases sensitivity of analysis to the parameter of interest (e.g., increases variance of estimate).

p-values in cases with nuisance parameters

Suppose we have a statistic q_{θ} that we use to test a hypothesized value of a parameter θ , such that the p-value of θ is

$$p_{\theta} = \int_{q_{\theta, \text{obs}}}^{\infty} f(q_{\theta}|\theta, \nu) dq_{\theta}$$

But what values of v to use for $f(q_{\theta}|\theta, v)$?

Fundamentally we want to reject θ only if $p_{\theta} < \alpha$ for all v.

→ "exact" confidence interval

Recall that for statistics based on the profile likelihood ratio, the distribution $f(q_{\theta}|\theta, v)$ becomes independent of the nuisance parameters in the large-sample limit.

But in general for finite data samples this is not true; one may be unable to reject some θ values if all values of v must be considered, even those strongly disfavoured by the data (resulting interval for θ "overcovers").

Profile construction ("hybrid resampling")

K. Cranmer, PHYSTAT-LHC Workshop on Statistical Issues for LHC Physics, 2008. oai:cds.cem.ch:1021125, cdsweb.cem.ch/record/1099969.

Compromise procedure is to reject θ if $p_{\theta} \le \alpha$ where the p-value is computed assuming the value of the nuisance parameter that best fits the data for the specified θ :

 $\hat{\hat{
u}}(heta)$

"double hat" notation means value of parameter that maximizes likelihood for the given θ .

The resulting confidence interval will have the correct coverage for the points $(\theta, \hat{v}(\theta))$.

Elsewhere it may under- or overcover, but this is usually as good as we can do (check with MC if crucial or small sample problem).

"Hybrid frequentist-Bayesian" method

Alternatively, suppose uncertainty in v is characterized by a Bayesian prior $\pi(v)$.

Can use the marginal likelihood to model the data:

$$L_{\rm m}(x|\theta) = \int L(x|\theta,\nu)\pi(\nu) d\nu$$

This does not represent what the data distribution would be if we "really" repeated the experiment, since then *v* would not change.

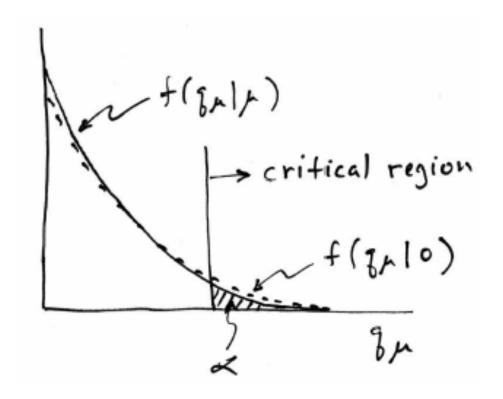
But the procedure has the desired effect. The marginal likelihood effectively builds the uncertainty due to *v* into the model.

Use this now to compute (frequentist) p-values \rightarrow result has hybrid "frequentist-Bayesian" character.

Low sensitivity to μ

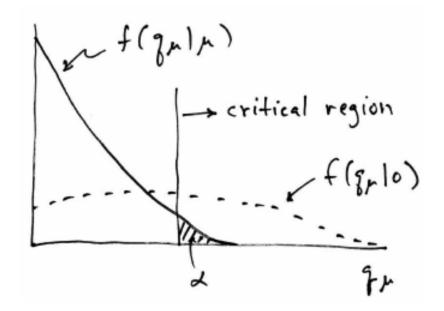
It can be that the effect of a given hypothesized μ is very small relative to the background-only ($\mu = 0$) prediction.

This means that the distributions $f(q_{\mu}|\mu)$ and $f(q_{\mu}|0)$ will be almost the same:



Having sufficient sensitivity

In contrast, having sensitivity to μ means that the distributions $f(q_{\mu}|\mu)$ and $f(q_{\mu}|0)$ are more separated:

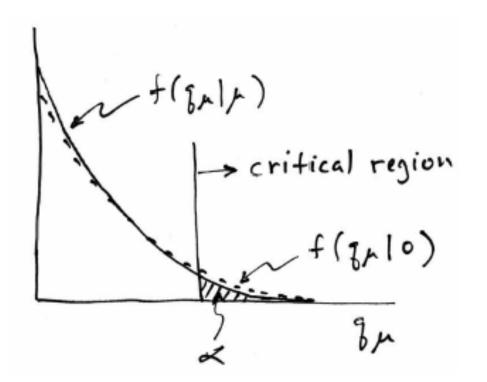


That is, the power (probability to reject μ if $\mu = 0$) is substantially higher than α . Use this power as a measure of the sensitivity.

Spurious exclusion

Consider again the case of low sensitivity. By construction the probability to reject μ if μ is true is α (e.g., 5%).

And the probability to reject μ if $\mu = 0$ (the power) is only slightly greater than α .



This means that with probability of around $\alpha = 5\%$ (slightly higher), one excludes hypotheses to which one has essentially no sensitivity (e.g., $m_{\rm H} = 1000 \, {\rm TeV}$).

"Spurious exclusion"

Ways of addressing spurious exclusion

The problem of excluding parameter values to which one has no sensitivity known for a long time; see e.g.,

Virgil L. Highland, Estimation of Upper Limits from Experimental Data, July 1986, Revised February 1987, Temple University Report C00-3539-38.

In the 1990s this was re-examined for the LEP Higgs search by Alex Read and others

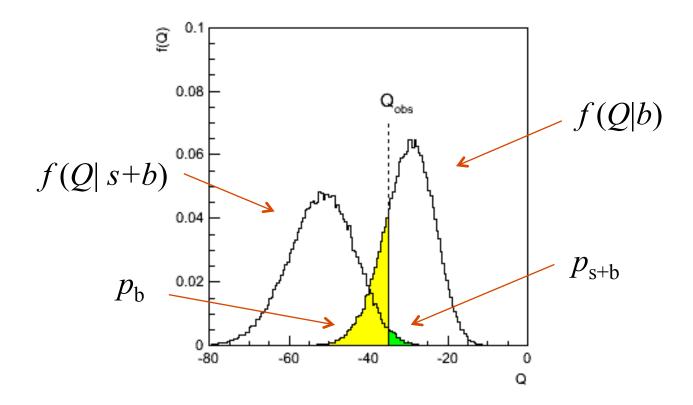
T. Junk, Nucl. Instrum. Methods Phys. Res., Sec. A 434, 435 (1999); A.L. Read, J. Phys. G 28, 2693 (2002).

and led to the "CL_s" procedure for upper limits.

Unified intervals also effectively reduce spurious exclusion by the particular choice of critical region.

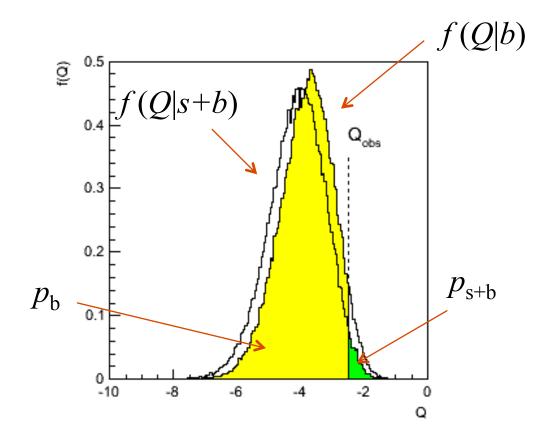
The CL_s procedure

In the usual formulation of CL_s , one tests both the $\mu = 0$ (b) and $\mu > 0$ ($\mu s + b$) hypotheses with the same statistic $Q = -2 \ln L_{s+b}/L_b$:



The CL_s procedure (2)

As before, "low sensitivity" means the distributions of Q under b and s+b are very close:



The CL_s procedure (3)

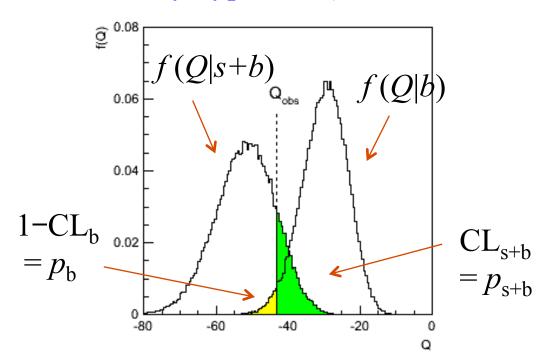
The CL_s solution (A. Read et al.) is to base the test not on the usual p-value (CL_{s+b}), but rather to divide this by CL_b (\sim one minus the p-value of the b-only hypothesis), i.e.,

Define:

$$CL_{s} = \frac{CL_{s+b}}{CL_{b}}$$
$$= \frac{p_{s+b}}{1 - p_{b}}$$

Reject s+b hypothesis if:

$$CL_s \leq \alpha$$



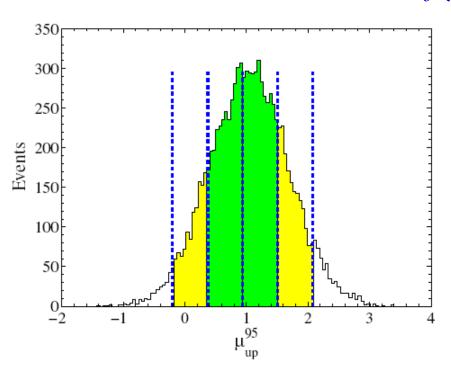
Reduces "effective" *p*-value when the two distributions become close (prevents exclusion if sensitivity is low).

Setting upper limits on $\mu = \sigma/\sigma_{\rm SM}$

Carry out the CLs procedure for the parameter $\mu = \sigma/\sigma_{\rm SM}$, resulting in an upper limit $\mu_{\rm up}$.

In, e.g., a Higgs search, this is done for each value of $m_{\rm H}$.

At a given value of $m_{\rm H}$, we have an observed value of $\mu_{\rm up}$, and we can also find the distribution $f(\mu_{\rm up}|0)$:



 $\pm 1\sigma$ (green) and $\pm 2\sigma$ (yellow) bands from toy MC;

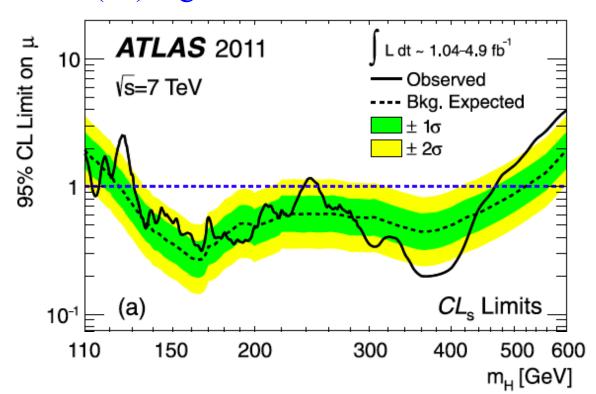
Vertical lines from asymptotic formulae.

How to read the green and yellow limit plots

For every value of $m_{\rm H}$, find the CLs upper limit on μ .

Also for each $m_{\rm H}$, determine the distribution of upper limits $\mu_{\rm up}$ one would obtain under the hypothesis of $\mu = 0$.

The dashed curve is the median μ_{up} , and the green (yellow) bands give the $\pm 1\sigma$ (2σ) regions of this distribution.

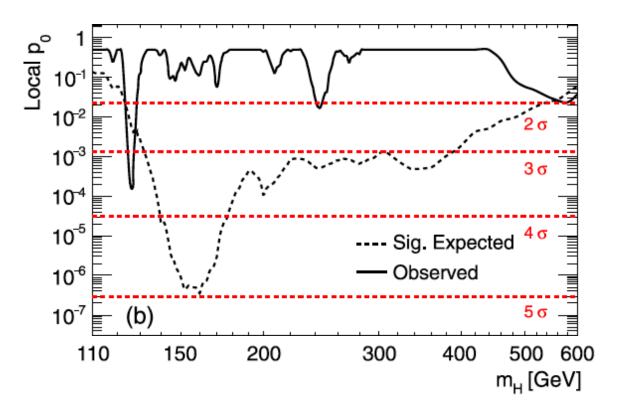


ATLAS, Phys. Lett. B 710 (2012) 49-66

How to read the p_0 plot

The "local" p_0 means the p-value of the background-only hypothesis obtained from the test of $\mu = 0$ at each individual $m_{\rm H}$, without any correct for the Look-Elsewhere Effect.

The "Sig. Expected" (dashed) curve gives the median p_0 under assumption of the SM Higgs ($\mu = 1$) at each $m_{\rm H}$.



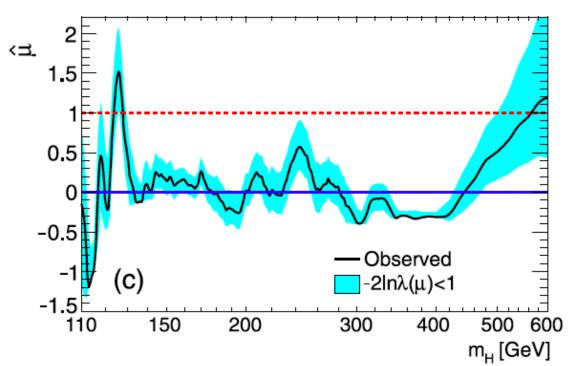
ATLAS, Phys. Lett. B 710 (2012) 49-66

How to read the "blue band"

On the plot of $\hat{\mu}$ versus $m_{\rm H}$, the blue band is defined by

$$-2 \ln \lambda(\mu) = -2 \ln(L(\mu)/L(\hat{\mu})) < 1 \text{ i.e., } \ln L(\mu) > \ln L(\hat{\mu}) - \frac{1}{2}$$

i.e., it approximates the 1-sigma error band (68.3% CL conf. int.)



ATLAS, Phys. Lett. B 710 (2012) 49-66

The Bayesian approach to limits

In Bayesian statistics need to start with 'prior pdf' $\pi(\theta)$, this reflects degree of belief about θ before doing the experiment.

Bayes' theorem tells how our beliefs should be updated in light of the data *x*:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') d\theta'} \propto L(x|\theta)\pi(\theta)$$

Integrate posterior pdf $p(\theta | x)$ to give interval with any desired probability content.

For e.g. $n \sim \text{Poisson}(s+b)$, 95% CL upper limit on s from

$$0.95 = \int_{-\infty}^{s_{\mathsf{up}}} p(s|n) \, ds$$

Bayesian prior for Poisson parameter

Include knowledge that $s \ge 0$ by setting prior $\pi(s) = 0$ for s < 0.

Could try to reflect 'prior ignorance' with e.g.

$$\pi(s) = \begin{cases} 1 & s \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead a flat prior for, say, the mass of the Higgs boson, this would imply a non-flat prior for the expected number of Higgs events.

Doesn't really reflect a reasonable degree of belief, but often used as a point of reference;

or viewed as a recipe for producing an interval whose frequentist properties can be studied (coverage will depend on true *s*).

Bayesian interval with flat prior for s

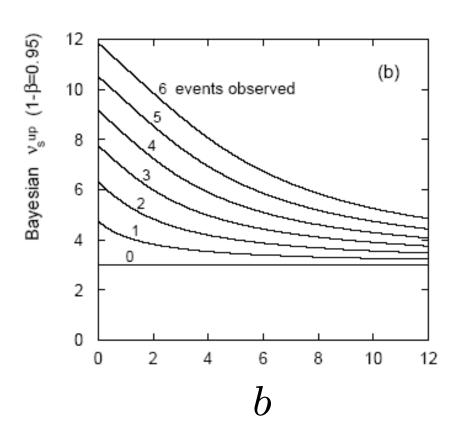
Solve numerically to find limit s_{up} .

For special case b = 0, Bayesian upper limit with flat prior numerically same as one-sided frequentist case ('coincidence').

Otherwise Bayesian limit is everywhere greater than the one-sided frequentist limit, and here (Poisson problem) it coincides with the CLs limit.

Never goes negative.

Doesn't depend on b if n = 0.



Priors from formal rules

Because of difficulties in encoding a vague degree of belief in a prior, one often attempts to derive the prior from formal rules, e.g., to satisfy certain invariance principles or to provide maximum information gain for a certain set of measurements.

Often called "objective priors"
Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent possible extreme cases).

In Objective Bayesian analysis, can use the intervals in a frequentist way, i.e., regard Bayes' theorem as a recipe to produce an interval with certain coverage properties.

Priors from formal rules (cont.)

For a review of priors obtained by formal rules see, e.g.,

Robert E. Kass and Larry Wasserman, The Selection of Prior Distributions by Formal Rules, J. Am. Stat. Assoc., Vol. 91, No. 435, pp. 1343-1370 (1996).

Formal priors have not been widely used in HEP, but there is recent interest in this direction, especially the reference priors of Bernardo and Berger; see e.g.

- L. Demortier, S. Jain and H. Prosper, *Reference priors for high energy physics*, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111.
- D. Casadei, *Reference analysis of the signal + background model in counting experiments*, JINST 7 (2012) 01012; arXiv:1108.4270.

Jeffreys' prior

According to Jeffreys' rule, take prior according to

$$\pi(\boldsymbol{\theta}) \propto \sqrt{\det(I(\boldsymbol{\theta}))}$$

where

$$I_{ij}(\boldsymbol{\theta}) = -E\left[\frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = -\int \frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} L(\boldsymbol{x}|\boldsymbol{\theta}) d\boldsymbol{x}$$

is the Fisher information matrix.

One can show that this leads to inference that is invariant under a transformation of parameters.

For a Gaussian mean, the Jeffreys' prior is constant; for a Poisson mean μ it is proportional to $1/\sqrt{\mu}$.

Jeffreys' prior for Poisson mean

Suppose $n \sim \text{Poisson}(\mu)$. To find the Jeffreys' prior for μ ,

$$L(n|\mu) = \frac{\mu^n}{n!} e^{-\mu} \qquad \frac{\partial^2 \ln L}{\partial \mu^2} = -\frac{n}{\mu^2}$$

$$I = -E\left[\frac{\partial^2 \ln L}{\partial \mu^2}\right] = \frac{E[n]}{\mu^2} = \frac{1}{\mu}$$

$$\pi(\mu) \propto \sqrt{I(\mu)} = \frac{1}{\sqrt{\mu}}$$

So e.g. for $\mu = s + b$, this means the prior $\pi(s) \sim 1/\sqrt{(s+b)}$, which depends on b. Note this is not designed as a degree of belief about s.

Bayesian limits on s with uncertainty on b

Consider $n \sim \text{Poisson}(s+b)$ and take e.g. as prior probabilities

$$\pi(s,b) = \pi_s(s)\pi_b(b)$$
 (or include correlations as appropriate) $\pi_s(s) = \text{const}, \sim 1/\sqrt{s+b}\dots$ $\pi_b(b) = \frac{1}{\sqrt{2\pi}\sigma_b}e^{-(b-b_{\text{meas}})^2/2\sigma_b^2}$ (or whatever)

Put this into Bayes' theorem,

$$p(s,b|n) \propto L(n|s,b)\pi(s,b)$$

Marginalize over the nuisance parameter b,

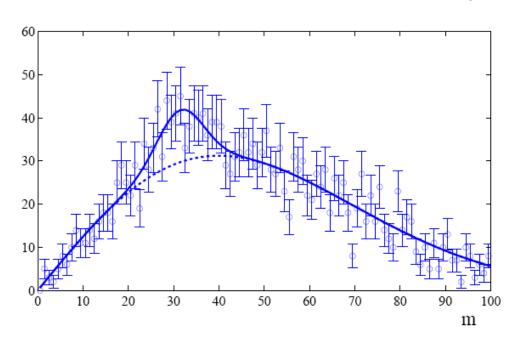
$$p(s|n) = \int p(s, b|n) \, db$$

Then use p(s|n) to find intervals for s with any desired probability content.

The Look-Elsewhere Effect

Suppose a model for a mass distribution allows for a peak at a mass m with amplitude μ .

The data show a bump at a mass m_0 .



How consistent is this with the no-bump ($\mu = 0$) hypothesis?

Local *p*-value

First, suppose the mass m_0 of the peak was specified a priori.

Test consistency of bump with the no-signal ($\mu = 0$) hypothesis with e.g. likelihood ratio

$$t_{\text{fix}} = -2 \ln \frac{L(0, m_0)}{L(\hat{\mu}, m_0)}$$

where "fix" indicates that the mass of the peak is fixed to m_0 .

The resulting *p*-value

$$p_{\text{local}} = \int_{t_{\text{fix,obs}}}^{\infty} f(t_{\text{fix}}|0) dt_{\text{fix}}$$

gives the probability to find a value of t_{fix} at least as great as observed at the specific mass m_0 and is called the local p-value.

Global *p*-value

But suppose we did not know where in the distribution to expect a peak.

What we want is the probability to find a peak at least as significant as the one observed anywhere in the distribution.

Include the mass as an adjustable parameter in the fit, test significance of peak using

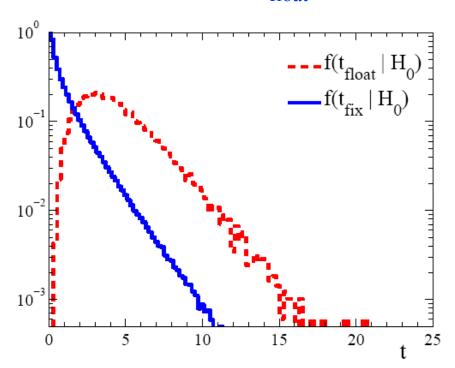
$$t_{\rm float} = -2 \ln \frac{L(0)}{L(\hat{\mu}, \hat{m})}$$
 (Note *m* does not appear in the $\mu = 0$ model.)

$$p_{\rm global} = \int_{t_{\rm float, obs}}^{\infty} f(t_{\rm float}|0) \, dt_{\rm float}$$

Distributions of $t_{\rm fix}$, $t_{\rm float}$

For a sufficiently large data sample, $t_{\rm fix}$ ~chi-square for 1 degree of freedom (Wilks' theorem).

For t_{float} there are two adjustable parameters, μ and m, and naively Wilks theorem says $t_{\text{float}} \sim \text{chi-square for 2 d.o.f.}$



In fact Wilks' theorem does not hold in the floating mass case because on of the parameters (m) is not-defined in the $\mu = 0$ model.

So getting t_{float} distribution is more difficult.

Approximate correction for LEE

We would like to be able to relate the *p*-values for the fixed and floating mass analyses (at least approximately).

Gross and Vitells show the *p*-values are approximately related by

$$p_{\rm global} \approx p_{\rm local} + \langle N(c) \rangle$$

where $\langle N(c) \rangle$ is the mean number "upcrossings" of $-2 \ln L$ in the fit range based on a threshold

$$c = t_{\text{fix}} = Z_{\text{local}}^2$$

and where $Z_{local} = \Phi^{-1}(1 - p_{local})$ is the local significance.

So we can either carry out the full floating-mass analysis (e.g. use MC to get *p*-value), or do fixed mass analysis and apply a correction factor (much faster than MC).

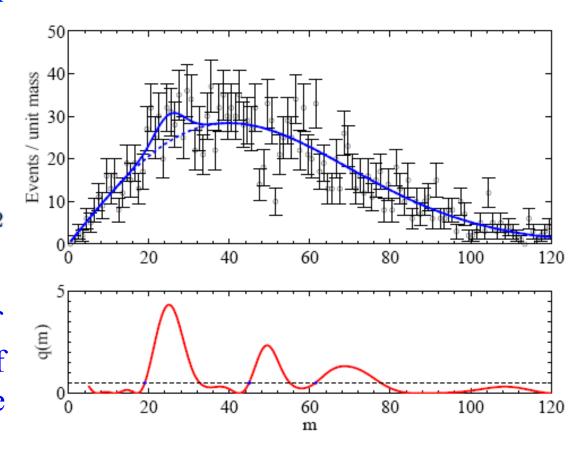
Upcrossings of $-2\ln L$

The Gross-Vitells formula for the trials factor requires $\langle N(c) \rangle$, the mean number "upcrossings" of $-2 \ln L$ in the fit range based on a threshold $c = t_{\rm fix} = Z_{\rm fix}^2$.

 $\langle N(c) \rangle$ can be estimated from MC (or the real data) using a much lower threshold c_0 :

$$\langle N(c) \rangle \approx \langle N(c_0) \rangle e^{-(c-c_0)/2}$$

In this way $\langle N(c) \rangle$ can be estimated without need of large MC samples, even if the the threshold c is quite high.

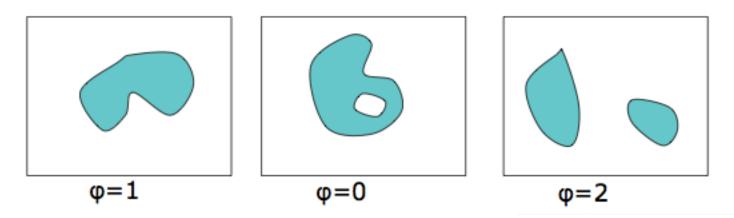


Multidimensional look-elsewhere effect

Generalization to multiple dimensions: number of upcrossings replaced by expectation of Euler characteristic:

$$E[\varphi(A_u)] = \sum_{d=0}^n \mathcal{N}_d \rho_d(u)$$

 Number of disconnected components minus number of `holes'



Applications: astrophysics (coordinates on sky), search for resonance of unknown mass and width, ...

Summary on Look-Elsewhere Effect

Remember the Look-Elsewhere Effect is when we test a single model (e.g., SM) with multiple observations, i..e, in mulitple places.

Note there is no look-elsewhere effect when considering exclusion limits. There we test specific signal models (typically once) and say whether each is excluded.

With exclusion there is, however, the analogous issue of testing many signal models (or parameter values) and thus excluding some even in the absence of signal ("spurious exclusion")

Approximate correction for LEE should be sufficient, and one should also report the uncorrected significance.

"There's no sense in being precise when you don't even know what you're talking about." — John von Neumann

Why 5 sigma?

Common practice in HEP has been to claim a discovery if the p-value of the no-signal hypothesis is below 2.9×10^{-7} , corresponding to a significance $Z = \Phi^{-1} (1 - p) = 5$ (a 5σ effect).

There a number of reasons why one may want to require such a high threshold for discovery:

The "cost" of announcing a false discovery is high.

Unsure about systematics.

Unsure about look-elsewhere effect.

The implied signal may be a priori highly improbable (e.g., violation of Lorentz invariance).

Why 5 sigma (cont.)?

But the primary role of the p-value is to quantify the probability that the background-only model gives a statistical fluctuation as big as the one seen or bigger.

It is not intended as a means to protect against hidden systematics or the high standard required for a claim of an important discovery.

In the processes of establishing a discovery there comes a point where it is clear that the observation is not simply a fluctuation, but an "effect", and the focus shifts to whether this is new physics or a systematic.

Providing LEE is dealt with, that threshold is probably closer to 3σ than 5σ .

Summary of Lecture 2

Confidence intervals obtained from inversion of a test of all parameter values.

Freedom to choose e.g. one- or two-sided test, often based on a likelihood ratio statistic.

Distributions of likelihood-ratio statistics can be written down in simple form for large-sample (asymptotic) limit.

Usual procedure for upper limit based on one-sided test can reject parameter values to which one has no sensitivity.

CLs, Bayesian methods both address this issue (and coincide in important special cases)

Look-elsewhere effect

Approximate correction should be sufficient

Extra slides

Unified (Feldman-Cousins) intervals

We can use directly

$$t_{\mu} = -2 \ln \lambda(\mu)$$
 where $\lambda(\mu) = \frac{L(\mu, \hat{\boldsymbol{\theta}})}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})}$

as a test statistic for a hypothesized μ .

Large discrepancy between data and hypothesis can correspond either to the estimate for μ being observed high or low relative to μ .

This is essentially the statistic used for Feldman-Cousins intervals (here also treats nuisance parameters).

G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873.

Distribution of t_{μ}

Using Wald approximation, $f(t_{\mu}|\mu')$ is noncentral chi-square for one degree of freedom:

$$f(t_{\mu}|\mu') = \frac{1}{2\sqrt{t_{\mu}}} \frac{1}{\sqrt{2\pi}} \left[\exp\left(-\frac{1}{2}\left(\sqrt{t_{\mu}} + \frac{\mu - \mu'}{\sigma}\right)^{2}\right) + \exp\left(-\frac{1}{2}\left(\sqrt{t_{\mu}} - \frac{\mu - \mu'}{\sigma}\right)^{2}\right) \right]$$

Special case of $\mu = \mu'$ is chi-square for one d.o.f. (Wilks).

The p-value for an observed value of t_u is

$$p_{\mu} = 1 - F(t_{\mu}|\mu) = 2\left(1 - \Phi\left(\sqrt{t_{\mu}}\right)\right)$$

and the corresponding significance is

$$Z_{\mu} = \Phi^{-1}(1 - p_{\mu}) = \Phi^{-1}(2\Phi(\sqrt{t_{\mu}}) - 1)$$

Feldman-Cousins discussion

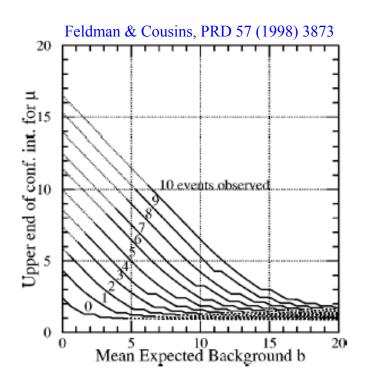
The initial motivation for Feldman-Cousins (unified) confidence intervals was to eliminate null intervals.

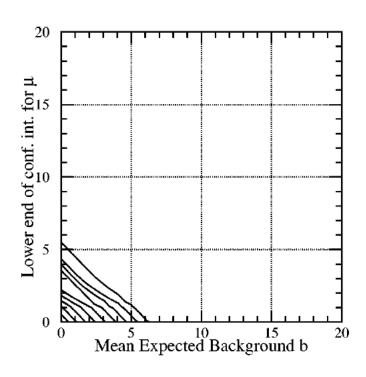
The F-C limits are based on a likelihood ratio for a test of μ with respect to the alternative consisting of all other allowed values of μ (not just, say, lower values).

The interval's upper edge is higher than the limit from the one-sided test, and lower values of μ may be excluded as well. A substantial downward fluctuation in the data gives a low (but nonzero) limit.

This means that when a value of μ is excluded, it is because there is a probability α for the data to fluctuate either high or low in a manner corresponding to less compatibility as measured by the likelihood ratio.

Upper/lower edges of F-C interval for μ versus b for $n \sim \text{Poisson}(\mu + b)$





Lower edge may be at zero, depending on data.

For n = 0, upper edge has (weak) dependence on b.

Discovery significance for $n \sim \text{Poisson}(s + b)$

Consider again the case where we observe n events, model as following Poisson distribution with mean s + b (assume b is known).

- 1) For an observed n, what is the significance Z_0 with which we would reject the s=0 hypothesis?
- 2) What is the expected (or more precisely, median) Z_0 if the true value of the signal rate is s?

Gaussian approximation for Poisson significance

For large s + b, $n \to x \sim \text{Gaussian}(\mu, \sigma)$, $\mu = s + b$, $\sigma = \sqrt{(s + b)}$.

For observed value x_{obs} , p-value of s = 0 is $Prob(x > x_{obs} \mid s = 0)$,:

$$p_0 = 1 - \Phi\left(\frac{x_{\text{obs}} - b}{\sqrt{b}}\right)$$

Significance for rejecting s = 0 is therefore

$$Z_0 = \Phi^{-1}(1 - p_0) = \frac{x_{\text{obs}} - b}{\sqrt{b}}$$

Expected (median) significance assuming signal rate s is

$$\mathrm{median}[Z_0|s+b] = \frac{s}{\sqrt{b}}$$

Better approximation for Poisson significance

Likelihood function for parameter s is

$$L(s) = \frac{(s+b)^n}{n!} e^{-(s+b)}$$

or equivalently the log-likelihood is

$$\ln L(s) = n \ln(s+b) - (s+b) - \ln n!$$

Find the maximum by setting $\frac{\partial \ln L}{\partial s} = 0$

gives the estimator for s: $\hat{s} = n - b$

Approximate Poisson significance (continued)

The likelihood ratio statistic for testing s = 0 is

$$q_0 = -2\ln\frac{L(0)}{L(\hat{s})} = 2\left(n\ln\frac{n}{b} + b - n\right)$$
 for $n > b$, 0 otherwise

For sufficiently large s + b, (use Wilks' theorem),

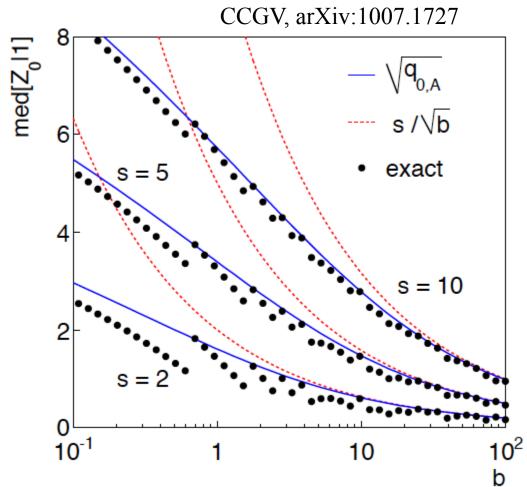
$$Z_0 \approx \sqrt{q_0} = \sqrt{2\left(n\ln\frac{n}{b} + b - n\right)}$$
 for $n > b$, 0 otherwise

To find median $[Z_0|s+b]$, let $n \to s+b$ (i.e., the Asimov data set):

$$\mathrm{median}[Z_0|s+b] \approx \sqrt{2\left((s+b)\ln(1+s/b)-s\right)}$$

This reduces to s/\sqrt{b} for s << b.

$n \sim \text{Poisson}(\mu \, s + b)$, median significance, assuming $\mu = 1$, of the hypothesis $\mu = 0$



"Exact" values from MC, jumps due to discrete data.

Asimov $\sqrt{q_{0,A}}$ good approx. for broad range of s, b.

 s/\sqrt{b} only good for $s \ll b$.

(PHYSTAT 2011)

Reference priors

J. Bernardo, L. Demortier, M. Pierini

Maximize the expected Kullback–Leibler divergence of posterior relative to prior:

$$D[\pi, p] \equiv \int p(\theta|x) \ln \frac{p(\theta|x)}{\pi(\theta)} d\theta$$

This maximizes the expected posterior information about θ when the prior density is $\pi(\theta)$.

Finding reference priors "easy" for one parameter:

Theorem 1 Let $\mathbf{z}^{(k)} = \{\mathbf{z}_1, \dots, \mathbf{z}_k\}$ denote k conditionally independent observations from \mathcal{M}_z . For sufficiently large k

$$\pi_k(\theta) \propto \exp\left\{ \mathbb{E}_{\boldsymbol{z}^{(k)} \mid \theta} [\log p_h(\theta \mid \boldsymbol{z}^{(k)})] \right\}$$

where $p_h(\theta \mid \mathbf{z}^{(k)}) \propto \prod_{i=1}^k p(\mathbf{z}_i \mid \theta) h(\theta)$ is the posterior which corresponds to any arbitrarily chosen strictly positive prior function $h(\theta)$ which makes the posterior proper for any $\mathbf{z}^{(k)}$.

(PHYSTAT 2011)

Reference priors (2)

J. Bernardo,

L. Demortier,

M. Pierini

Actual recipe to find reference prior nontrivial; see references from Bernardo's talk, website of Berger (www.stat.duke.edu/~berger/papers) and also Demortier, Jain, Prosper, PRD 82:33, 34002 arXiv:1002.1111:

$$\pi_{R}(\theta) = \lim_{k \to \infty} \frac{\pi_{k}(\theta)}{\pi_{k}(\theta_{0})},$$
with $\pi_{k}(\theta) = \exp \left\{ \int p(x_{(k)} | \theta) \ln \left[\frac{p(x_{(k)} | \theta) h(\theta)}{\int p(x_{(k)} | \theta) h(\theta) d\theta} \right] dx_{(k)} \right\}$

Prior depends on order of parameters. (Is order dependence important? Symmetrize? Sample result from different orderings?)