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Outline

Lecture 1: Introduction, probability, parameter estimation

Lecture 2:  Hypothesis tests, limits

Lecture 3:  Systematic uncertainties, experimental sensitivity

Lecture 4:  Bayesian methods, Student’s t regression
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Example:  fitting a straight line

Data:

Model: yi independent and all follow yi ~ Gauss(μ(xi ), σi )

assume xi and σi known.

Goal:  estimate θ0
Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)
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Maximum likelihood fit with Gaussian data

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)
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θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     

to find 
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Correlation between

causes errors

to increase.

Standard deviations from

tangent lines to contour

ML (or LS) fit of θ0 and θ1
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The information on θ1

improves accuracy of

If we have a measurement t1 ~ Gauss (θ1, σt1)
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Profiling
The lnL = lnLmax – ½ contour in the (θ0, θ1) plane is a confidence 
region at CL = 39.3%.

Furthermore if one wants to know only about, say, θ0, then the
interval in θ0  corresponding to lnL = lnLmax – ½ is a confidence 
interval at CL = 68.3% (i.e., ±1 std. dev.).

I.e., form the interval for θ0
using

where θ1 is replaced by its 
“profiled” value
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Reminder of Bayesian approach
In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value θ.

Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

Our experiment has data x, → likelihood L(x|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf p(θ|x) contains all our knowledge about θ.
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Bayesian approach:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 
We need to associate prior probabilities with θ0 and θ1, e.g.,

Likelihood for control
measurement t1

← ‘non-informative’, in any
case much broader than L(θ0)

Ur = “primordial”
prior 

← suppose knowledge of θ0 has 
no influence on knowledge of θ1

prior after t1,
before y
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Bayesian example:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

Putting the ingredients into Bayes’ theorem gives:

posterior    ∝ likelihood         ✕ prior

Note here the likelihood only reflects the measurements y.

The information from the control measurement t1 has been put 
into the prior for θ1.

We would get the same result using the likelihood P(y,t|θ0,θ1) and 
the constant  “Ur-prior” for θ1.
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Marginalizing the posterior pdf

For this example, numbers come out same as in frequentist 
approach, but interpretation different.  

We then integrate (marginalize)  p(θ0,θ1|y) to find p(θ0 |y):

In this example we can do the integral (rare).  We find

(same as for MLE)
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Marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional θ but look only at 
distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf p(θ), generate a sequence of 
points θ1, θ2, θ3,... 

1)  Start at some point 

2)  Generate  

Proposal density q(θ; θ0)
e.g. Gaussian centred
about θ0

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

Still works if p(θ) is known only as a proportionality, which is 
usually what we have from Bayes’ theorem: p(θ|x) ∝ p(x|θ)π(θ).

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:  q(θ; θ0) = q(θ0; θ)

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher p(θ), take it;  
if not, only take the step with probability p(θ)/p(θ0).
If proposed step rejected, repeat the current point.
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Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Normalized histogram of θ0 gives 
its marginal posterior pdf:
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
an “expert” says it should be positive and not too much  greater 
than 0.1 or so, i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.
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Motivation, disclosure, etc.

Details in:  G. Cowan, Statistical Models with Uncertain Error
Parameters, Eur. Phys. J. C (2019) 79:133, arXiv:1809.05778

For several years I’ve been pushing the idea that the uncertainties
on estimated systematic errors (“errors on errors”) should play
a role in HEP analyses, particularly for combinations.

It turns out that models that use
errors on errors have qualitatively
new, interesting, desirable features:

Sensitivity to outliers reduced.

Confidence intervals sensitive
to goodness of fit.

https://xkcd.com/2110/
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Prototype example:  
curve fitting, averages

Suppose independent 
yi ~ Gauss, i = 1,...,N, with

μ are the parameters in the fit function φ(x;μ). 

If we take the σi as known, we have the usual log-likelihood

which leads to the Least Squares estimators for μ.
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Model with uncertain σi
2

If the σi2 are uncertain, we can take them 
as adjustable parameters.

The estimated variances vi = si2 are 
modeled as gamma distributed.

The likelihood becomes

(si = √vi)Want

→



21G. Cowan / RHUL Physics CERN Academic Training / Statistics for PP Lecture 4

Profile log-likelihood
One can profile over the σi2 in close form.  

The log-profile-likelihood is

Quadratic terms replace by sum of logs.

Equivalent to replacing Gauss pdf for yi by Student’s t, νdof = 1/2ri2

Confidence interval for μ becomes sensitive to goodness-of-fit
(increases if data internally inconsistent).

Fitted curve less sensitive to outliers.

Simple program for Student’s t average:  stave.py
http://www.pp.rhul.ac.uk/~cowan/stat/stave/
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Sensitivity of average to outliers
Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take r = 0.01 for all).

inner error bars
= σy,i

outer error bars 
= (σy,i2 + σu,i2)½
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Sensitivity of average to outliers (2)
Now suppose the measurement at 10 had come out at 20:

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r → 0).

“outlier”
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Average with all  r = 0.2
If we assign to each measurement r = 0.2, 

Estimate still at 10.00, size of interval moves 0.63 → 0.65
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Average with all  r = 0.2 with outlier
Same now with the outlier (middle measurement 10 → 20)

Estimate →10.75 (outlier pulls much less).

Half-size of interval → 0.78 (inflated because of bad g.o.f.).
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Discussion
Gamma variance model gives confidence intervals that
increase in size when the data are internally inconsistent,
and gives decreased sensitivity to outliers (known property of 
Student’s t based regression).

Equivalence with Student’s t model, ν = 1/2r2 degrees of freedom.

Simple profile likelihood – quadratic terms replaced by logarithmic:
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Discussion (2)
Method assumes that meaningful ri values can be assigned and 
there is enough “expert knowledge” is available to do so.

I.e. best if the experts publish some information on the reliability 
of their reported systematics.

Could the public likelihood standard include at least the possibility 
to include this information? 
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Finally
Four lectures only enough for a brief introduction to:

Parameter estimation, maximum likelihood
Hypothesis tests, p-values
Limits (confidence intervals/regions)
Systematics (nuisance parameters)
Asymptotics (Wilks’ theorem)
Bayesian parameter estimation
Student’s t regression, gamma variance model

Final thought:  once the basic formalism is fixed, most of the 
work focuses on writing down the likelihood, e.g., P(x|θ), and 
including in it enough parameters to adequately describe the data 
(true for both Bayesian and frequentist approaches).
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Extra slides


