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Outline

Almost everything is a subset of the University of London course:

  http://www.pp.rhul.ac.uk/~cowan/stat_course.html

Lecture 1: Introduction, probability, 

Lecture 2:  Parameter estimation

Lecture 3:  Hypothesis tests

Lecture 4:  Introduction to Machine Learning
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Some statistics books, papers, etc.
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.
Luca Lista, Statistical Methods for Data Analysis in Particle Physics, 
Springer, 2017.
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006
S. Brandt, Statistical and Computational Methods in Data Analysis, 
Springer, New York, 1998.
R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 
083C01 (2022); pdg.lbl.gov sections on probability, statistics, MC.
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Theory ↔ Statistics ↔ Experiment
Theory (model, hypothesis): Experiment (observation):

+ response of measurement
apparatus

= model prediction
data

Uncertainty enters
on many levels

→  quantify with
probability
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A definition of probability 
Consider a set S with subsets A, B, ...

Kolmogorov
axioms (1933)

Also define conditional 
probability of A given B:

Subsets A, B independent if:

If A, B independent,
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Interpretation of Probability
I.  Relative frequency    (→ “frequentist statistics”)
 A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...
II.  Subjective probability    (→ “Bayesian statistics”)
 A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.

•   In particle physics  frequency interpretation often most 
useful, but subjective probability can provide more natural 
treatment of non-repeatable phenomena:  systematic 
uncertainties, probability that magnetic monopoles exist,...
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Bayes’ theorem
From the definition of conditional probability we have

and

but , so

Bayes’ theorem

First published (posthumously) by the
Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the doctrine 
of chances, Philos. Trans. R. Soc. 53 (1763) 370

Bayes’
theorem
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The law of total probability

Consider a subset B of 
the sample space S,

B ∩ Ai

Ai

B

S

divided into disjoint subsets Ai
such that ∪i Ai = S,

→

→

→ law of total probability

Bayes’ theorem becomes
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An example using Bayes’ theorem
Suppose the probability (for anyone) to have a disease D is:

← prior probabilities, i.e.,
     before any test carried out

Consider a test for the disease:  result is + or -

← probabilities to (in)correctly
     identify a person with the disease

← probabilities to (in)correctly
     identify a healthy person

Suppose your result is +.  How worried should you be?
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Bayes’ theorem example (cont.)
The probability to have the disease given a + result is

i.e. you’re probably OK!

Your viewpoint:  my degree of belief that I have the disease is 3.2%.

Your doctor’s viewpoint:  3.2% of people like this have the disease.

← posterior probability
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: x).

 Probability = limiting frequency

Probabilities such as

 P (string theory is true), 
 P (0.117 < αs < 0.119), 
 P (Biden wins in 2024),

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

Preferred theories (models, hypotheses, ...) are those  that 
predict a high probability for data “like” the data observed.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior
probabilities were π(H), then it says how these probabilities
should change in the light of the data.
 No general prescription for priors (subjective!)
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Random variables and probability density functions
A random variable is a numerical characteristic assigned to an 
element of the sample space; can be discrete or continuous.

Suppose outcome of experiment is continuous value x 

→ f (x) = probability density function (pdf)

x must be somewhere
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For discrete outcome xi with e.g. i = 1, 2, ... we have

probability (mass) function

x must take on one of its possible values

Probability mass function
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Cumulative distribution function
Probability to have outcome less than or equal to x is

cumulative distribution function

Alternatively define pdf with
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Some other pdfs

Joint pdf, e.g., f (x,y)

Marginal pdfs

Conditional pdfs

Bayes’ theorem:
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Expectation values
Consider continuous r.v. x with pdf  f (x).  

Define expectation (mean) value as

Notation (often):                         ~ “centre of gravity” of pdf. 

(equivalent)

For discrete r.v.s, replace integral by sum:

For a function y(x) with pdf g(y), 



18G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 1

Variance, standard deviation
Variance:

Notation:

Standard deviation:

σ ~ width of pdf, same units as x.

Relation between σ and other measures of width, e.g.,
Full Width at Half Max (FWHM) depend on the pdf, e.g.,
FWHM = 2.35σ for Gaussian.
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Covariance and correlation
Define covariance cov[x,y] (also use matrix notation Vxy) as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., ,   then

→ x and  y, ‘uncorrelated’

N.B. converse not always true.

Can show -1 ≤ ρ ≤ 1.
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Correlation (cont.) 
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Covariance matrix
Suppose we have a set of n random variables, say, x1,..., xn.

We can write the covariance of each pair as an n x n matrix:

Covariance matrix is:

 symmetric,

 diagonal = variances,

 positive semi-definite:



22G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 1

Correlation matrix
Closely related to the covariance matrix is the n x n matrix of 
correlation coefficients:

By construction, diagonal 
elements are  ρii = 1
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Some distributions (see extra slides)
Distribution/pdf Example use in Particle Physics
Binomial   Branching ratio
Multinomial  Histogram with fixed N
Poisson   Number of events found
Uniform   Monte Carlo method
Exponential  Decay time
Gaussian   Measurement error
Chi-square   Goodness-of-fit
Cauchy   Mass of resonance
Landau    Ionization energy loss
Beta    Prior pdf for efficiency
Gamma   Sum of exponential variables
Student’s t   Resolution function with adjustable tails
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Example:  decay of an unstable particle
As an example that we’ll use to illustrate several statistical 
methods, consider measuring the proper decay time of an 
unstable particle such as a B meson:

Measure flight distance d and 
momentum p of decay products 
of B meson with mass mB.

These are related to the proper 
decay time tp (time in B rest 
frame) by

so
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Exponential pdf for proper decay time
We can model t as following an exponential pdf:

We can show (exercise) that the mean and variance of t are:

random
variable

parameter
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Example:  statistics with exponentially 
distributed data 

Coming up later in the week:  

Suppose the experiment is 
repeated n times giving data:  
t1,..., tn.

Using the data values, estimate the mean lifetime τ.

Quantify the statistical uncertainty in the estimate.

Report upper/lower limits on the the mean lifetime.

observed values



27G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 1

Extra slides
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Correlation vs. independence
Consider a joint pdf such as:

I.e. here f (-x,y) = f (x,y)

Because of the symmetry, we have E[x] = 0 and also

and so ρ = 0, the two variables x and y are uncorrelated.
But f (y|x) clearly depends on x, so x and y are not independent.
 Uncorrelated:  the joint density of x and y is not tilted.
 Independent:  imposing x does not affect conditional pdf of y.
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Binomial distribution

Consider N independent experiments (Bernoulli trials):
outcome of each is ‘success’ or ‘failure’,
probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 ≤ n ≤  N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

But order not important; there are

ways (permutations) to get n successes in N trials, total 
probability for n is sum of probabilities for each permutation.
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Binomial distribution  (2)

The binomial distribution is therefore

random
variable

parameters

For the expectation value and variance we find:
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Binomial distribution  (3)
Binomial distribution for several values of the parameters:

Example:  observe N decays of W±,  the number n of which are 
W→μν is a binomial r.v., p = branching ratio.
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Multinomial distribution
Like binomial but now m outcomes instead of two, probabilities are

For N trials we want the probability to obtain:

n1 of outcome 1,
n2 of outcome 2,
 ⠇
nm of outcome m.

This is the multinomial distribution for
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Multinomial distribution (2)
Now consider outcome i as ‘success’, all others as ‘failure’.

→ all ni individually binomial with parameters N, pi

for all i

One can also find the covariance to be

Example:  represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution
Consider binomial n in the limit

→ n follows the Poisson distribution:

Example:  number of scattering events
n with cross section σ found for a fixed
integrated luminosity, with
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Uniform distribution
Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is:

Notation:  x follows a uniform distribution between α and β

write as: x ~ U[α,β]
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Very often used with  α = 0, β = 1 (e.g., Monte Carlo method).

For any r.v. x with pdf f (x), cumulative distribution F(x), the 
function  y = F(x) is uniform in [0,1]:

Uniform distribution (2)

because f (x) = dF/dx = dy/dx
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Exponential distribution
The exponential pdf for the continuous r.v. x is defined by:
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Example:  proper decay time t of an unstable particle

(τ = mean lifetime)

Lack of memory (unique to exponential):

Exponential distribution (2)

Question for discussion:

A cosmic ray muon is created 30 km high in the atmosphere, 
travels to sea level and is stopped in a block of scintillator, giving a 
start signal at t0.  At a time t it decays to an electron giving a stop 
signal.  What is distribution of the difference between stop and 
start times, i.e., the pdf of t – t0 given t > t0?
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Gaussian (normal) distribution
The Gaussian (normal) pdf for a continuous r.v. x is defined by:

N.B. often μ, σ2 denote
mean, variance of any
r.v., not only Gaussian.
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Standardized random variables
If a random variable y has pdf f (y) with mean μ and std. dev. σ, 
then the standardized variable

has mean of zero and standard deviation of 1.

Often work with the standard Gaussian distribution (μ = 0. σ = 1)
using notation:

Then e.g. y = μ + σx follows

has the pdf 
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Multivariate Gaussian distribution
Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

Marginal pdf of each xi is Gaussian with mean μi, standard 
deviation σi = √Vii .
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Two-dimensional Gaussian distribution

where ρ = cov[x1, x2]/(σ1σ2) 
is the correlation coefficient.
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Chi-square (χ2) distribution
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by

n = 1, 2, ... =  number of ‘degrees of
                       freedom’ (dof)

For independent Gaussian xi, i = 1, ..., n, means μi, variances σi
2,

follows χ2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction
with method of least squares.
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Cauchy (Breit-Wigner) distribution
The Breit-Wigner pdf for the continuous r.v. x is defined by

(Γ = 2, x0 = 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] → ∞.

x0 = mode (most probable value)

Γ = full width at half maximum

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ...

Γ = decay rate (inverse of mean lifetime)
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Landau distribution
For a charged particle with β = ν /c traversing a layer of matter
of thickness d, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

+ - + - 
- + - + 

β

d

Δ
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Landau distribution  (2)

Long ‘Landau tail’
     →  all moments ∞

Mode (most probable 
value) sensitive to β ,
 →  particle i.d.
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Beta distribution

Often used to represent pdf 
of continuous r.v. nonzero only
between finite limits, e.g.,
y = a0 + a1x,    a0 ≤ y ≤ a0 + a1
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Gamma distribution

Often used to represent pdf 
of continuous r.v. nonzero only
in [0,∞].

Also e.g. sum of n exponential
r.v.s or time until nth event
in Poisson process ~ Gamma
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Student's t distribution

ν = number of degrees of freedom
      (not necessarily integer)

ν = 1 gives Cauchy,

ν → ∞ gives Gaussian.
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Student's t distribution (2)
If x ~ Gaussian with μ = 0, σ2 = 1, and 
    z ~ χ2 with n degrees of freedom, then
    t = x / (z/n)1/2  follows Student's t with ν = n.

This arises in problems where one forms the ratio of a sample 
mean to the sample standard deviation of Gaussian r.v.s.

The Student's t provides a bell-shaped pdf with adjustable
tails, ranging from those of a Gaussian, which fall off very
quickly, (ν → ∞, but in fact already very Gauss-like for 
ν =  two dozen),  to the very long-tailed Cauchy (ν = 1). 

Developed in 1908 by William Gosset, who worked under
the pseudonym "Student" for the Guinness Brewery.


