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Outline

Problems with least squares for combina@ons and fiBng
Trea@ng es@mates of uncertain@es as themselves uncertain
 Gamma Variance Model
Examples that illustrate:
 tension between inputs ↔ uncertainty of average
 (reduced) sensi@vity to outliers 

Based on
G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778
G. Cowan, , EPJ Web of Conferences 258, 09002 (2022); arXiv:2107.02652
E. Canonero, A. Brazzale and G. Cowan, Eur. Phys. J. C (2023) 83:1100; arXiv:2304.10574
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Least squares: some issues
The method of least squares requires the standard devia@ons of 
the measured quan@@es, but oMen these are poorly known.

The uncertainty (e.g. confidence interval) of an LS average does 
not reflect goodness of fit:

  LS average of 9 ± 1 and 11 ± 1 is 10 ± 0.71

  LS average of 5 ± 1 and 15 ± 1 is 10 ± 0.71

LS es@mators are equivalent to maximum-likelihood assuming 
Gaussian distributed measurements; but the tails of a Gaussian 
fall off very fast, not always an appropriate model.

  → Outliers in LS average  have very large influence.

Solu@on:  incorporate the uncertainty in the standard devia@ons 
of the measurements into the analysis.
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Formula2on of the problem
Suppose measurements y have probability (density) P(y|μ,θ), 
 μ = parameters of interest
 θ = nuisance parameters
To provide info on nuisance parameters, oMen treat their best 
es@mates u as indep. Gaussian distributed r.v.s., giving likelihood

or log-likelihood (up to addi@ve const.)
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Systema2c errors and their uncertainty
OMen the θi could represent a systema@c bias and its best 
es@mate ui in the real measurement is zero.

The σu,i are the corresponding “systema@c errors”.

Some@mes σu,i is well known, e.g., it is itself a sta@s@cal error 
known from sample size of a control measurement.

Other @mes the ui are from an indirect measurement, Gaussian 
model approximate and/or the σu,i  are not exactly known.

Or some@mes σu,i is at best a guess that represents an 
uncertainty in the underlying model (“theore@cal error”).

In any case we can allow that the σu,i are not known in general 
with perfect accuracy.
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Gamma model for variance estimates
Suppose we want to treat the systema@c errors as uncertain,
so let the σu,i be adjustable nuisance parameters.

Suppose we have es@mates si for σu,i  or equivalently vi = si
2, is an 

es@mate of σu,i
2.

Model the vi as independent and gamma distributed:

Set α and β so that they give desired mean and width for f (v):

   E[v] = σu
2  =  α/β,

   r = 1/2√α ≈ rela@ve “error on the error” = σs/E[s] .
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Distribu2ons of v and s = √v
For α, β of  gamma distribu@on, 

relative “error on error”
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Mo0va0on for gamma variance model
If one were to have n independent observa@ons u1,..,un,  with all 
u ~ Gauss(θ, σu

2),  and we use the sample variance

to es@mate σu
2, then (n-1)v/σu

2 follows a chi-square distribu@on
for n-1 degrees of freedom, which is a special case of the
gamma distribu@on (α = n/2, β = 1/2).  (In general one doesn’t
have a sample of ui values, but if this were to be how v was 
es@mated, the gamma model would follow.)

Furthermore choice of the gamma distribu@on for v allows one
to profile over the nuisance parameters σu

2 in closed form and 
leads to a simple profile likelihood.
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Likelihood for gamma variance model

Treated like data:      y1,...,yL  (the primary measurements)
          u1,...,uN (es@mates of nuisance par.)
          v1,...,vN (es@mates of variances
                   of es@mates of NP)

Adjustable parameters:    μ1,...,μM  (parameters of interest)
           θ1,...,θN (nuisance parameters)
           σu,1,...,σu,N (sys. errors = std. dev. of
            of NP es@mates)
Fixed parameters:          r1,...,rN         (rel. err. in es@mate of σu,i)

αi = 1/4ri2

βi = αi/σui2
,
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Profiling over systema2c errors
We can profile over the σu,i in closed form

which gives the profile log-likelihood (up to addi@ve const.)

In limit of small ri and vi → σu,i
2, the log terms revert back to the 

quadra@c form seen with known σu,i.
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Equivalent likelihood from Student’s t

We can arrive at same likelihood by defining

Since ui ~ Gauss and vi ~ Gamma, zi ~ Student’s t

with 

Resul@ng likelihood same as profile Lʹ(μ,θ) from gamma model 
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Curve fitting, averages
Suppose independent 
yi ~ Gauss, i = 1,...,N, with

μ are the parameters of interest in the fit func@on φ(x;μ), 

θ are bias parameters constrained by control measurements 
ui ~ Gauss(θi, σu,i), so that if σu,i are known we have

(known).
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Profiling over θi with known σu,i

Profiling over the bias parameters θi for known σu,i gives usual 
least-squares (BLUE) 

Widely used technique for curve fiBng in Par@cle Physics.

Generally in real measurement, ui = 0.

Generalized to case of correlated yi and ui by summing 
sta@s@cal and systema@c covariance matrices.
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Curve fiGng with uncertain σu,i

Suppose now σu,i
2  are adjustable parameters with gamma 

distributed es@mates vi.

Retaining the θi but profiling over σu,i
2 gives

Profiled values of θi from solu@on to cubic equa@ons:
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Example:  average of two measurements

Increased discrepancy
between values to be 
averaged gives larger
interval.

Interval length saturates
at ~level of absolute 
discrepancy between 
input values.

Approximate (”MINOS”) confidence interval based on

with

rela@ve error 
on sys. error
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Sensi2vity of average to outliers
Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take r = 0.01 for all).

inner error bars
= σy,i 

outer error bars 
= (σy,i2 + σu,i2)½ 
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Sensi2vity of average to outliers (2)
Now suppose the measurement at 10 had come out at 20:

Es@mate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r → 0).

“outlier”
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Average with all  r = 0.2
If we assign to each measurement r = 0.2, 

Es@mate s@ll at 10.00, size of interval moves 0.63 → 0.65
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Average with all  r = 0.2 with outlier
Same now with the outlier (middle measurement 10 → 20)

Estimate →10.75 (outlier pulls much less).

Half-size of interval → 0.78 (inflated because of bad g.o.f.).
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Naive approach to errors on errors
Naively one might think that the error on the error in the previous
example could be taken into account conserva@vely by infla@ng 
the systema@c errors, i.e., 

But this gives 

without outlier (middle meas. 10)

with outlier (middle meas. 20)

So the sensi@vity to the outlier is not reduced and the size of the
confidence interval is s@ll independent of goodness of fit.
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Discussion / Conclusions
Gamma model for variance es@mates gives confidence intervals
that increase in size when the data are internally inconsistent,
and gives decreased sensi@vity to outliers (known property of 
Student’s t based regression).

Equivalence with Student’s t model, ν = 1/2r2 degrees of freedom.

Simple profile likelihood – quadra@c terms replaced by logarithmic:



23G. Cowan / RHUL Physics CMS SM Group 18 June 2024 / Errors on Errors

Discussion / Conclusions (2)
Asympto@cs can break for increased error-on-error, may need 
Bartlel correc@on, higher-order asympto@cs or MC.

Method assumes that meaningful ri values can be assigned and 
is valuable when systema@c errors are not well known but 
enough “expert knowledge” is available to do so.

Alterna@vely, one could try to fit a global r to all systema@c
errors, analogous to PDG scale factor method or meta-analysis
à la DerSimonian and Laird.  (→ current work).

Could also use e.g. as “stress test” – crank up the ri values un@l 
significance of result degrades and ask if you really trust the 
assigned systema@c errors at that level.

Ongoing studies (with Enzo Canonero):  applica@on to averages 
of top mass, W mass, parton density and  MC fits;  es@mates of 
theory errors (with EC, Frank Tackmann, Tom Cridge).
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Extra Slides
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Goodness of fit
Can quan@fy goodness of fit with sta@s@c

where Lʹ (φ,θ) has an adjustable φi for each yi (the saturated model).

Asympto@cally should have q ~ chi-squared(N-M).

For increasing ri, asympto@c distribu@on no longer valid.  

Bartlel (1937) defines modified sta@s@c:

By construc@on q′ has mean nd = N-M and turns out to have a 
distribu@on significantly closer to the asympto@c chi-square. 
(See Canonero et al., Eur. Phys. J. C (2023) 83:1100.)
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Distribu2ons of q
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Distribu2ons of BartleP-corrected qʹ
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Curve FiGng History:  Least Squares
Method of Least Squares by Laplace, Gauss, Legendre, Galton...

C.F. Gauss, Theoria Combina@onis Observa@onum Erroribus 
Minimis Obnoxiae, Commenta@ones Societa@s Regiae Scien@arium 
GoBngensis Recec@ores Vol. V (MDCCCXXIII).

To fit curve f (x;θ) to data yi ± σi, 
adjust parameters θ = (θ1,..., θM)
to minimize

Assumes σi known.

yi ± σi

f (x;θ)
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Least Squares ← Maximum Likelihood
Method of Least Squares follows from method of Maximum
Likelihood if independent measured yi ~ Gaussian. 
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Goodness of fit

χ2
min =  20.9,

N – M = 9 – 2 = 7,
so goodness of fit is “poor”.

This is an indica@on that the
model is inadequate, and thus
the values it predicts will 
have a “systema@c error”.

If the hypothesized model f (x;θ) is correct, χ2
min = χ2(θ) should

follow a chi-square distribu@on for N (# meas.) – M (# filed par.)
degrees of freedom; expecta@on value = N – M.  

Suppose ini@al guess for model is:      f (x;θ) = θ0 + θ1 x

^
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Systema0c errors ↔ nuisance parameters

Es@mators for all parameters correlated, and as a consequence 
the presence of the nuisance parameters inflates the sta@s@cal 
errors of the parameter(s) of interest.

Solu@on: fix the model, generally by inser@ng addi@onal 
adjustable parameters (“nuisance parameters”).  Try, e.g.,

χ2
min = 3.5, N – M = 6

For some point in the
enlarged parameter space
we hope the model is
now ~correct.

Sys. error gone?

f (x;θ) = θ0 + θ1 x + θ2 x2
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Least Squares for Averaging
= fit of horizontal line

Raymond T. Birge, 
Probable Values of the 
General Physical Constants 
(as of January 1, 1929), 
Physical Review 
Supplement, Vol 1, Number 
1, July 1929

Forerunner of the 
Par@cle Data Group

h"p://bancro<.berkeley.edu/Exhibits/physics/learning01.html
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“Errors on Errors”

→  PDG “scale factor method” ≈ scale sys. errors with common 
factor until χ2

min = appropriate no. of degrees of freedom.
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Correlated uncertain2es
The phrase “correlated uncertain@es” usually means that a single
nuisance parameter affects the distribu@on (e.g., the mean) of more 
than one measurement.   

For example, consider measurements y, parameters of interest μ,
nuisance parameters θ with 

That is, the θi are defined here as contribu@ng to a bias and
the (known) factors Rij determine how much θj affects yi.

As before suppose one has independent control measurements 
ui~ Gauss(θi, σui).



35G. Cowan / RHUL Physics CMS SM Group 18 June 2024 / Errors on Errors

Correlated uncertain2es  (2)

The total bias of yi can be defined as 

which can be es@mated with

These es@mators are correlated having covariance

In this sense the present method treats “correlated uncertain@es”,
i.e., the control measurements ui are independent, but nuisance
parameters affect mul@ple measurements, and thus bias es@mates
are correlated.
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Single-measurement model
As a simplest example consider

y ~ Gauss(μ, σ2), 

v ~ Gamma(α, β),

Test values of μ with tμ = -2 ln λ(μ) with 
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Distribu2on of tμ

From Wilks’ theorem, in the asympto@c limit we should
find tμ ~ chi-squared(1).

Here “asympto@c limit” means all es@mators ~Gauss, which
means r → 0.  For increasing r, clear devia@ons visible:
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Distribu2on of tμ  (2)
For larger r, breakdown of asympto@cs gets worse:

Values of r ~ several tenths are relevant so we cannot in general
rely on asymptotics to get confidence intervals, p-values, etc.
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BartleP correc2ons
One can modify tμ defining

such that the new sta@s@c’s distribu@on is beler approximated 
by chi-squared for nd degrees of freedom (Bartlel, 1937).

For this example E[tμ] ≈ 1 + 3r2  +  2r4 works well:
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BartleP correc2ons (2)
Good agreement for r ~ several tenths out to √tμʹ ~ several, i.e.,
good for significances of several sigma:
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68.3% CL confidence interval for μ
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Same with interval from pμ = α with 
nuisance parameters profiled at μ
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Coverage of intervals
Consider previous average of 
two numbers but now generate
for i = 1, 2 data values 
     yi ~ Gauss(μ, σy,i)
     ui ~ Gauss(0, σu,i)
     vi ~ Gamma(σu,i, ri)
     σy,i = σu,i = 1
and look at the probability 
that the interval covers the
true value of μ.

Coverage stays reasonable
to r ~ 0.5, even not bad
for Profile Construction
out to r ~ 1.
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Applica2on to the muon g − 2 anomaly
The recently measured muon g − 2 (ave. of 2006, 2021) disagrees 
with the Standard Model predic@on with a significance of 4.2σ.

Muon g-2 Collab., PRL 126, 141801 (2021) 

Discrepancy significantly
reduced by 2021 la7ce-
based predic9on of Borsanyi 
et al. (BMW).

Current goal is to inves9gate 
sensi9vity of significance to 
error assump9ons, so for 
now focus on the 4.2σ 
problem.

Here using 2021 meausrement; see also D. P. 
Aguillard et al. (The Muon g−2 Collaboration)
Phys. Rev. Lett. 131, 161802 (2023)
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Muon g − 2 ingredients

the ingredients of the 4.2σ effect are:

Using

0.37 (stat.) ± 0.17 (sys.)

0.40 (Had. Vac. Pol.) ± 0.18 (Had. Light-by-Light)

(ave. of BNL 2006 and FNAL 2021)

(SM pred. by Muon g −2 theory ini@a@ve)
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Suppose σSM uncertain
Suppose measurement errors well known, but that the SM theory 
error σSM  (es@mated 0.43) could be uncertain.

This is the largest systema@c and probably hardest to es@mate.

Treat es@mate vSM = (0.43)2 of variance σ2
SM as gamma distributed, 

width from rela@ve uncertainty parameter rSM.

Maximum-likelihood for mean from minimum of
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p-value/significance of common-mean  hypothesis

Significance (goodness of fit) from 

Because of non-quadra@c term in Q(μ), distribu@on of q departs 
from chi-square(1) for increasing rSM.

Best to get distribu@on of q from Monte Carlo (and speed up with 
Bartlel correc@on – see EPJC (2019) 79:133).

For rSM > 0 distribu@on of q depends on σ2
SM.  For MC use 

Maximum-Likelihood es@mate (“profile construc@on”):

# of sigmas
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Significance of discrepancy versus rSM

Naive model:  use least squares but let σSM → (1 + rSM) σSM

Gamma variance model gives greater decrease in significance for 
rSM ≳ 0.2, e.g., 3.1σ for rSM = 0.3, 2.0σ for rSM = 0.6.
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Significance of discrepancy versus rSM

Establishing 4σ effect requires rSM ≲ 0.3 even if nominal exp. 
and SM uncertainties become half of present values.
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Discussion on muon g−2
Including uncertain@es on es@mates of uncertain@es can have large 
effect on hypothesis test, esp. for high significance.

To establish e.g. a 5σ effect it is crucial to have both:
 small uncertain@es
 accurate es@mates of those uncertain@es (~ 20% level)

This is ul@mately because the tails of the Gaussian fall off so quickly.  

Gamma Variance Model ~ Student’s t likelihood with ν = 1/2r2  
degrees of freedom → longer tails than Gaussian.

Ongoing discussion with Bogdan Malaescu of Muon g-2 Theory 
Ini@a@ve on the HVP uncertainty, see, e.g.,
B. Malaescu et al., h"ps://indico.him.uni-
mainz.de/event/11/contribuGons/80/a"achments/50/51/amuWorkshop_CorrelaGons_Malaescu.pdf

M. Davier et al., Eur. Phys. J. C 80 (2020) 241 , arXiv:1908.00921
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SoMware:  
hlps://www.pp.rhul.ac.uk/~cowan/stat/exercises/stave/stave.py

The program stave.py implements the Gamma Variance Model 
(GVM) described in Lecture 3 for averaging N measurements.

For details see G. Cowan, EPJC (2019) 79:133.

In this version the model does not dis@nguish between sta@s@cal 
and systema@c errors.  

Confidence interval for the mean μ becomes sensi@ve to goodness-
of-fit (increases if data internally inconsistent).

Es@mated mean less sensi@ve to outliers.

Tutorial:  Student’s t average
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Least Squares vs Gamma Variance Model
Quadra@c terms from Least Squares replaced by logarithmic ones:

where

 yi = measured value

 vi = si
2 = estimated variance

  ri = relative uncertainty on estimate of variance 

Equivalent to replacing Gauss pdf for measurements by 
Student’s t, number of degrees of freedom = 1/2ri

2



53G. Cowan / RHUL Physics CMS SM Group 18 June 2024 / Errors on Errors

A quick look at stave.py

y = np.array([17., 19., 15., 3.])     # measured values
s = np.array([1.5, 1.5, 1.5, 1.5])     # estimates of std. dev
v = s**2                  # estimates of variances
r = np.array([0.2, 0.2, 0.2, 0.2])     # relative errors on errors

Set measured values, es@mates of std. dev., errors on errors:

log-likelihood:
class NegLogL:

  def __init__(self, y, s, r):
    self.setData(y, s, r)
   
  def setData(self, y, s, r):
    self.data = y, s, r

  def __call__(self, mu):
    y, s, r = self.data
    v = s ** 2
    lnf = -0.5*(1. + 1./(2.*r**2))*np.log(1. + 2.*(r*(y-mu))**2/v)
    return -np.sum(lnf)
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Example average with GVM
Suppose four measurements of the parameter μ.

Each reports an es@mated standard dev. of s = 1.5 and
a “rela@ve error on the error” r = 0.2.

Suggested exercise:

Experiment with different 
numbers of measurements, 
different levels of internal 
consistency, different values 
for the std. dev. and error 
on error.

outlier


