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Hypothesis, likelihood
Suppose the entire result of an experiment (set of 
measurements) is a collection of numbers x.  

A (simple) hypothesis is a rule that assigns a probability to each 
possible data outcome:

Note:
1)  For the likelihood we treat the data x as fixed.
2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
more undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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The likelihood function for i.i.d.* data

Consider n independent observations of x:  x1, ..., xn,  where 
x follows f(x; θ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed
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Parameter estimation
The parameters of a pdf are any constants that characterize it, 

r.v.

Suppose we have a sample of observed values: x = (x1, ..., xn)

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.

i.e., θ indexes a
set of hypotheses.
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Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

biasedlarge
variance

best

We want small (or zero) bias (systematic error):

→ average of repeated measurements should tend to true value.

And we want a small variance (statistical error):
→ small bias & variance are in general conflicting criteria
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Maximum Likelihood Estimators (MLEs)
We define the maximum likelihood estimators or MLEs to be 
the parameter values for which the likelihood is maximum.

Maximizing L
equivalent to 
maximizing log L

Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but 
in practice they’re very good).
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MLE example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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MLE example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
generate 50  values
using τ = 1:

We find the ML estimate:
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MLE example:  parameter of exponential pdf (3)

For the MLE

For the exponential distribution one has for mean, variance:

we therefore find

→

→
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian − (almost) always true for 
ML in large sample limit.
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Variance of estimators from information inequality
The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:

Minimum Variance
Bound (MVB)
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MVB for MLE of exponential parameter

We found for the exponential parameter the MLE 

and we showed b = 0, hence 𝜕b/𝜕τ = 0.

Find 

We find

and since E[ti] = τ for all i,

and therefore (Here MLE is “efficient”)..

,
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Variance of estimators: graphical method
Expand lnL(θ) about its maximum:

First term is lnLmax, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→ to get , change θ away from until lnL decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic lnL since finite sample size (n = 50).
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Information inequality for N parameters
Suppose we have estimated N parameters θ = (θ1,...,θN)   

The Fisher information matrix is

The information inequality states that the matrix

and the covariance matrix of estimators θ is ^

is positive semi-definite:  

zTMz ≥ 0 for all z ≠ 0, diagonal elements ≥ 0  
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Information inequality for N parameters (2)

In practice the inequality is ~always used in the large-sample limit:
bias → 0
inequality → equality, i.e, M = 0, and therefore V-1 = I

That is, 

This can be estimated from data using

Find the matrix V-1 numerically (or with automatic differentiation),
then invert to get the covariance matrix of the estimators
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Example of ML with 2 parameters

Consider a scattering angle distribution with x = cos θ,

or if xmin < x < xmax, need to normalize so that 

Example:  α = 0.5, β = 0.5, xmin = -0.95, xmax = 0.95, 
generate n = 2000 events with Monte Carlo.

need to find maximum
numerically
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Example of ML with 2 parameters:  fit result
Finding maximum of ln L(α, β) numerically gives

N.B.  No binning of data for fit,
but can compare to histogram for
goodness-of-fit (e.g. ‘visual’ or χ2). 

(Co)variances from

=   correlation coefficient
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Two-parameter fit:  MC study
Repeat ML fit with 500 experiments, all with n = 2000 events:

Estimates average to ~true values;
(Co)variances close to previous estimates;
marginal pdfs approximately Gaussian.
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Multiparameter graphical method for variances

Expand lnL(θ) to 2nd order about MLE:

relate to covariance matrix of 
MLEs using information 
(in)equality.

ln Lmax zero

Result: 

So the surface corresponds to

,  which is the equation of a (hyper-) ellipse.
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Multiparameter graphical method (2)

Distance from MLE to tangent planes gives standard deviations.
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The lnLmax − 1/2 contour for two parameters

For large n, lnL takes on quadratic form near maximum:

The contour is an ellipse:
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(Co)variances from ln L contour

→ Tangent lines to contours give standard deviations.

→ Angle of ellipse φ related to correlation:

The α, β plane for the first
MC data set
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Confidence intervals by inverting a test
In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Confidence intervals for a parameter θ can be found by 
defining a test of the hypothesized value θ (do this for all θ): 

Specify values of the data that are ‘disfavoured’ by θ
(critical region) such that P(data in critical region|θ) ≤ α
for a prespecified α, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ.

Now invert the test to define a confidence interval as:

set of θ values that are not rejected in a test of size α
(confidence level CL is 1- α).
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Relation between confidence interval and p-value
Equivalently we can consider a significance test for each
hypothesized value of θ, resulting in a p-value, pθ.  

If pθ ≤ α, then we reject θ. 

The confidence interval at CL = 1 – α consists of those values of 
θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which pθ > α. 

In practice find by setting pθ = α and solve for θ.

For a multidimensional parameter space θ = (θ1,... θM) use same 
idea – result is a confidence “region” with boundary determined 
by pθ = α.
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Coverage probability of confidence interval
If the true value of θ is rejected, then it’s not in the confidence 
interval.  The probability for this is by construction (equality for 
continuous data):

P(reject θ|θ) ≤ α = type-I error rate

Therefore, the probability for the interval to contain or “cover” θ is

P(conf. interval “covers” θ|θ) ≥ 1 – α

This assumes that the set of θ values considered includes the true 
value, i.e., it assumes the composite hypothesis P(x|H,θ).
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Frequentist upper limit on Poisson parameter
Consider again the case of observing n ~ Poisson(s + b).

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found from
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n ~ Poisson(s+b):  frequentist upper limit on s
For low fluctuation of n, formula can give negative result for sup; 
i.e. confidence interval is empty;  all values of s ≥ 0 have ps ≤ α.
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Limits near a boundary of the parameter space
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44



32G. Cowan / RHUL Physics INFN 2022, Paestum / Parameter Estimation 2

Systematic uncertainties and nuisance parameters
In general, our model of the data is not perfect:

x

P
(x

|θ
)

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter ↔ systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Example:  fitting a straight line

Data:

Model: yi independent and all follow yi ~ Gauss(μ(xi ), σi )

assume xi and σi known.

Goal:  estimate θ0
Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)
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Maximum likelihood fit with Gaussian data

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)
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θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     

to find 
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Correlation between

causes errors

to increase.

Standard deviations from

tangent lines to contour

ML (or LS) fit of θ0 and θ1
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The information on θ1

improves accuracy of

If we have a measurement t1 ~ Gauss (θ1, σt1)
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Reminder of Bayesian approach
In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value θ.

Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

Our experiment has data x, → likelihood L(x|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf p(θ|x) contains all our knowledge about θ.
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Bayesian approach:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 
We need to associate prior probabilities with θ0 and θ1, e.g.,

Likelihood for control
measurement t1

← ‘non-informative’, in any
case much broader than L(θ0)

Ur = “primordial”
prior 

← suppose knowledge of θ0 has 
no influence on knowledge of θ1

prior after t1,
before y
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Bayesian example:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

Putting the ingredients into Bayes’ theorem gives:

posterior    ∝ likelihood         ✕ prior

Note here the likelihood only reflects the measurements y.

The information from the control measurement t1 has been put 
into the prior for θ1.

We would get the same result using the likelihood P(y,t|θ0,θ1) and 
the constant  “Ur-prior” for θ1.
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Marginalizing the posterior pdf

For this example, numbers come out same as in frequentist 
approach, but interpretation different.  

We then integrate (marginalize)  p(θ0,θ1|y) to find p(θ0 |y):

In this example we can do the integral (rare).  We find

(same as for MLE)
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Marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional θ but look only at 
distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf p(θ), generate a sequence of 
points θ1, θ2, θ3,... 

1)  Start at some point 

2)  Generate  

Proposal density q(θ; θ0)
e.g. Gaussian centred
about θ0

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

Still works if p(θ) is known only as a proportionality, which is 
usually what we have from Bayes’ theorem: p(θ|x) ∝ p(x|θ)π(θ).

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:  q(θ; θ0) = q(θ0; θ)

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher p(θ), take it;  
if not, only take the step with probability p(θ)/p(θ0).
If proposed step rejected, repeat the current point.
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Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Normalized histogram of θ0 gives 
its marginal posterior pdf:
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
an “expert” says it should be positive and not too much  greater 
than 0.1 or so, i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.
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Finally
Two lectures only enough for a brief introduction to:

Parameter estimation
Hypothesis tests (→ path to Machine Learning)
Limits (confidence intervals/regions)
Systematics (nuisance parameters)
A bit beyond...  (Bayesian methods, MCMC)

Final thought:  once the basic formalism is fixed, most of the 
work focuses on writing down the likelihood, e.g., P(x|θ), and 
including in it enough parameters to adequately describe the 
data (true for both Bayesian and frequentist approaches) so 
often best to invest most of your time with it.
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Extra slides


