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Outline 
1.  Review of some formalism and analysis tasks 

2.  Broad view of combinations & review of parameter estimation 

3.  Combinations of parameter estimates. 

4.  Least-squares averages, including correlations 

5.  Comparison with Bayesian parameter estimation 

6.  Bayesian averages with outliers 

7.  PDG brief overview 
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Hypothesis, distribution, likelihood, model 
Suppose the outcome of a measurement is x. (e.g., a number of  
events, a histogram, or some larger set of numbers). 

A hypothesis H specifies the probability of the data P(x|H). 

Often H is labeled by parameter(s) θ → P(x|θ). 

For the probability distribution P(x|θ), variable is x; θ is a constant. 

If e.g. we evaluate P(x|θ) with the observed data and regard it as a 
function of the parameter(s), then this is the likelihood: 

Here use the term ‘model’ to refer to the full function P(x|θ) 
that contains the dependence both on x and θ. 

(Sometimes write L(x|θ) for model or likelihood, depending  
on context.) 

L(θ) = P(x|θ)         (Data x fixed; treat L as function of θ.) 
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Bayesian use of the term ‘likelihood’ 
We can write Bayes theorem as 

where L(x|θ) is the likelihood.   It is the probability for x given 
θ, evaluated with the observed x, and viewed as a function of θ. 

Bayes’ theorem only needs L(x|θ) evaluated with a given data  
set (the ‘likelihood principle’). 

For frequentist methods, in general one needs the full model. 

For some approximate frequentist methods, the likelihood  
is enough. 

posterior 

prior 
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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Data analysis in particle physics  
Observe events (e.g., pp collisions) and for each, measure 
a set of characteristics: 

 particle momenta, number of muons, energy of jets,... 

Compare observed distributions of these characteristics to  
predictions of theory.  From this, we want to: 

   Estimate the free parameters of the theory: 

   Quantify the uncertainty in the estimates: 

   Assess how well a given theory stands in agreement  
   with the observed data: 

 
Test/exclude regions of the model’s parameter space (→ limits) 
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Combinations 
“Combination of results” can be taken to mean: how to construct  
a model that incorporates more data.  

E.g. several experiments,  
     Experiment 1:  data x, model P(x|θ) → upper limit θup,1 
     Experiment 2:  data y, model P(y|θ) → upper limit θup,2 

Or main experiment and control measurement(s). 

The best way to do the combination is at the level of the 
data, e.g., (if x,y independent)   

 P(x,y|θ) = P(x|θ) P(y|θ) →  “combined” limit θup,comb 

If the data are not available but rather only the “results” (limits, 
parameter estimates, p-values) then possibilities are more limited. 

Usually OK for parameter estimates, difficult/impossible for limits, 
 p-values without additional assumptions & information loss. 
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Quick review of frequentist parameter estimation 
Suppose we have a pdf characterized by one or more parameters: 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Maximum likelihood 
The most important frequentist method for 
constructing estimators is to take the value of  
the parameter(s) that maximize the likelihood: 

The resulting estimators are functions of  
the data and thus characterized by a sampling  
distribution with a given (co)variance: 

In general they may have a nonzero bias: 

Under conditions usually satisfied in practice, bias of ML estimators 
is zero in the large sample limit, and the variance is as small as 
possible for unbiased estimators.   

ML estimator may not in some cases be regarded as the optimal  
trade-off between these criteria (cf. regularized unfolding). 
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Ingredients for ML 
To find the ML estimate itself one only needs the likelihood L(θ) . 

In principle to find the covariance of the estimators, one requires 
the full model L(x|θ).  E.g., simulate many times independent data  
sets and look at distribution of the resulting estimates: 
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Ingredients for ML (2) 
Often (e.g., large sample case) one can 
approximate the covariances using only 
the likelihood L(θ): 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

This translates into a simple 
graphical recipe: 
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The method of least squares 
Suppose we measure N values, y1, ..., yN,  
assumed to be  independent Gaussian  
r.v.s with  

Assume known values of the control 
variable x1, ..., xN and known variances 

The likelihood function is 

We want to estimate θ, i.e., fit the curve to the data points. 
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The method of least squares (2) 

The log-likelihood function is therefore 

So maximizing the likelihood is equivalent to minimizing 

Minimum defines the least squares (LS) estimator  

Very often measurement errors are ~Gaussian and so ML 
and LS are essentially the same. 

Often minimize χ2 numerically (e.g. program MINUIT). 
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LS with correlated measurements 
If the yi follow a multivariate Gaussian, covariance matrix V, 

Then maximizing the likelihood is equivalent to minimizing 
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Linear LS problem 
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Linear LS problem (2) 
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Linear LS problem (3) 

Equals MVB if yi Gaussian) 
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Goodness-of-fit with least squares 
The value of the χ2 at its minimum is a measure of the level 
of agreement between the data and fitted curve: 

It can therefore be employed as a goodness-of-fit statistic to 
test the hypothesized functional form λ(x; θ). 

We can show that if the hypothesis is correct, then the statistic  
t = χ2

min follows the chi-square pdf, 

where the number of degrees of freedom is  

       nd  = number of data points - number of fitted parameters 
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Goodness-of-fit with least squares (2) 
The chi-square pdf has an expectation value equal to the number  
of degrees of freedom, so if χ2

min ≈  nd the fit is ‘good’. 

More generally, find the p-value: 

This is the probability of obtaining a χ2
min as high as the one 

we got, or higher, if the hypothesis is correct. 
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Using LS to combine measurements 
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Combining correlated measurements with LS 

That is, if we take the estimator to be a linear form Σi wi yi,  
and find the wi that minimize its variance, we get the LS solution  
(= BLUE, Best Linear Unbiased Estimator). 
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Example: averaging two correlated measurements 
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Negative weights in LS average 
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Covariance, correlation, etc. 
For a pair of random variables x and y, the covariance and 
correlation are 

One only talks about the correlation of two quantities to which one 
assigns probability (i.e., random variables).   

So in frequentist statistics, estimators for parameters can be 
correlated, but not the parameters themselves. 

In Bayesian statistics it does make sense to say that two parameters 
are correlated, e.g.,   
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Example of “correlated systematics” 
Suppose we carry out two independent measurements of the  
length of an object using two rulers with diferent thermal 
expansion properties. 

Suppose the temperature is not known exactly but must 
be measured (but lengths measured together so T same for both), 

and the (uncorrected) length measurements are modeled as 

The expectation value of the measured length Li (i = 1, 2)  
is related to true length λ at a reference temperature τ0 by 



G. Cowan  Terascale Statistics School 2015 / Combination 27 

Two rulers (2) 
The model thus treats the measurements T, L1, L2 as uncorrelated 
with standard deviations σT, σ1, σ2, respectively: 

Alternatively we could correct each raw measurement:  

which introduces a correlation between y1, y2 and T 

But the likelihood function (multivariate Gauss in T, y1, y2)  
is the same function of τ and λ as before (equivalent!). 

     Language of y1, y2:  temperature gives correlated systematic. 
     Language of L1, L2:  temperature gives “coherent” systematic. 
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Two rulers (3) 

Outcome has some surprises: 

Estimate of λ does not lie 
between y1 and y2. 
 
Stat. error on new estimate 
of temperature substantially 
smaller than initial σT. 
 
These are features, not bugs, 
that result from our model 
assumptions. 
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Two rulers (4) 
We may re-examine the assumptions of our model and  
conclude that, say, the parameters α1, α2 and τ0 were also 
uncertain. 

We may treat their nominal values as measurements (need a model; 
Gaussian?) and regard α1, α2 and τ0  as as nuisance parameters. 



temperature

le
ng
th

T 0T

1L

2L

1
y

2
y

G. Cowan  Terascale Statistics School 2015 / Combination 30 

Two rulers (5) 
The outcome changes; some surprises may be “reduced”. 
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“Related” parameters 
Suppose the model for two independent measurements x and y 
contain the same parameter of interest µ and a common nuisance 
parameter, θ, such as the jet-energy scale.   

To combine the measurements, construct the full likelihood: 

Although one may think of θ as common to the two 
measurements, this could be a poor approximation (e.g., the two 
analyses use jets with different angles/energies, so a single  
jet-energy scale is not a good model). 

Better model:  suppose the parameter for x is θ, and for y it is 

where ε is an additional nuisance parameter expected to be small. 
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Model with nuisance parameters 
The additional nuisance parameters in the model may spoil our 
sensitivity to the parameter of interest µ, so we need to constrain 
them with control measurements. 

Often we have no actual control measurements, but some  
“nominal values” for θ and ε,  θ and ε, which we treat as if they 
were measurements, e.g., with a Gaussian model: 

~ ~ 

We started by considering θ and θ’ to be the same, so probably  
take ε = 0. 

So we now have an improved model 

~ 

with which we can estimate µ, set limits, etc. 
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Example:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ×       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than naive √n . 

Basic idea:  sample full multidimensional parameter space; 
look, e.g., only at distribution of parameters of interest.  
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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The error on the error 
Some systematic errors are well determined 

 Error from finite Monte Carlo sample 
 
Some are less obvious 

 Do analysis in n ‘equally valid’ ways and 
 extract systematic error from ‘spread’ in results. 

 
Some are educated guesses 

 Guess possible size of missing terms in perturbation series;  

 vary renormalization scale 

Can we incorporate the ‘error on the error’? 

 (cf. G. D’Agostini 1999; Dose & von der Linden 1999) 
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A more general fit (symbolic) 
Given measurements:  

and (usually) covariances: 

Predicted value: 

control variable parameters bias 

Often take: 

Minimize 

Equivalent to maximizing L(θ) » e-χ2/2, i.e., least squares same  
as maximum likelihood using a Gaussian likelihood function.  

expectation value 
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Its Bayesian equivalent 

and use Bayes’ theorem: 

To get desired probability for θ, integrate (marginalize) over b: 

→ Posterior is Gaussian with mode same as least squares estimator,  
     σθ  same as from χ2 = χ2

min + 1.  (Back where we started!) 

Take 

Joint probability 
for all parameters 
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Motivating a non-Gaussian prior πb(b) 
Suppose now the experiment is characterized by 

where si is an (unreported) factor by which the systematic error is  
over/under-estimated. 

Assume correct error for a Gaussian πb(b) would be siσi
sys, so 

Width of πs(si) reflects 
‘error on the error’. 



G. Cowan  Terascale Statistics School 2015 / Combination 47 

Error-on-error function πs(s) 
A simple unimodal probability density for 0 < s < 1 with  
adjustable mean and variance is the Gamma distribution: 

Want e.g. expectation value  
of 1 and adjustable standard  
deviation σs , i.e.,  

mean = b/a 
variance = b/a2 

In fact if we took πs (s) ~ inverse Gamma, we could integrate πb(b) 
in closed form (cf. D’Agostini, Dose, von Linden).  But Gamma 
seems more natural & numerical treatment not too painful. 

s 
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Prior for bias πb(b) now has longer tails 

Gaussian (σs = 0)      P(|b| > 4σsys)  =  6.3 × 10-5 

σs = 0.5                    P(|b| > 4σsys)  =  0.65% 

b 
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A simple test 
Suppose fit effectively averages four measurements. 

 Take σsys = σstat = 0.1, uncorrelated. 

Case #1: data appear compatible Posterior p(µ|y): 

Usually summarize posterior p(µ|y)  
with mode and standard deviation: 

experiment 

m
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m
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µ	




G. Cowan  Terascale Statistics School 2015 / Combination 50 

Simple test with inconsistent data 
Case #2: there is an outlier 

→ Bayesian fit less sensitive to outlier. 

→ Error now connected to goodness-of-fit. 

Posterior p(µ|y): 

experiment 
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Goodness-of-fit vs. size of error 
In LS fit, value of minimized χ2 does not affect size 
of error on fitted parameter. 

In Bayesian analysis with non-Gaussian prior for systematics, 
a high χ2 corresponds to a larger error (and vice versa). 

2000 repetitions of 
experiment, σs = 0.5, 
here no actual bias. 

χ2 

σµ from least squares 

post- 
erior	
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Particle Data Group averages 

The PDG needs pragmatic solutions for averages where the  
reported information may be incomplete/inconsistent. 

Often this involves taking the quadratic sum of statistical and 
systematic uncertainties for LS averages. 

If asymmetric errors (confidence intervals) are reported, PDG has 
a recipe to reconstruct a model based on a Gaussian-like function 
where sigma is a continuous function of the mean. 

Exclusion of inconsistent data “sometimes quite subjective”. 

If min. chi-squared is much larger than the number of degrees of 
freedom Ndof = N-1, scale up the input errors a factor  

so that new χ2 = Ndof.  Error on the average increased by S.  

K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014); pdg.lbl.gov 
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Summary on combinations 
The basic idea of combining measurements is to write down the 
model that describes  all of the available experimental outcomes. 

If the original data are not available but only parameter estimates,  
then one treats the estimates (and their covariances) as “the data”. 
Often a multivariate Gaussian model is adequate for these. 

If the reported values are limits, there are few meaningful options. 

PDG does not combine limits unless the can be “deconstructed” back 
into a Gaussian measurement. 

ATLAS/CMS 2011 combination of Higgs limits used the histograms  
of event counts (not the individual limits) to construct a full model 
(ATLAS-CONF-2011-157, CMS PAS HIG-11-023). 

Important point is to publish enough information so that meaningful  
combinations can be carried out. 
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Extra slides 
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A quick review of frequentist statistical tests  
Consider a hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space Ω 

critical region w 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α	


But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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p-values 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Express level of compatibility by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

Requires one to say what part of data space constitutes lesser 
compatibility with H than the observed data (implicitly this 
means that region gives better agreement with some alternative). 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

Terascale Statistics School 2015 / Combination 

E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 × 10-7. 
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Using a p-value to define test of H0 

One can show the distribution of the p-value of H, under  
assumption of H, is uniform in [0,1]. 

So the probability to find the p-value of H0, p0, less than α is 

Terascale Statistics School 2015 / Combination 

We can define the critical region of a test of H0 with size α as the  
set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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The Poisson counting experiment 
Suppose we do a counting experiment and observe n events. 

 Events could be from signal process or from background –  
 we only count the total number. 

Poisson model:   

s = mean (i.e., expected) # of signal events 

b = mean # of background events 

Goal is to make inference about s, e.g., 

     test s = 0 (rejecting H0 ≈ “discovery of signal process”) 

     test all non-zero s  (values not rejected =  confidence interval) 

In both cases need to ask what is relevant alternative hypothesis. 
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Poisson counting experiment: discovery p-value 
Suppose b = 0.5 (known), and we observe nobs = 5.   

Should we claim evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Poisson counting experiment: discovery significance 

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended to 
cover, e.g., hidden systematics, 
plausibility signal model, 
compatibility of data with signal, 
“look-elsewhere effect”  
(~multiple testing), etc. 

Equivalent significance for p = 1.7 × 10-4:   

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”) 
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Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ α  
 for a prespecified α, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ . 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size α  (confidence level is 1 - α ). 

The interval will cover the true value of θ with probability ≥ 1 - α. 

Equivalently, the parameter values in the confidence interval have 
p-values of at least α. 
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Frequentist upper limit on Poisson parameter 
Consider again the case of observing n ~ Poisson(s + b). 

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL. 

Relevant alternative is s = 0 (critical region at low n) 

p-value of hypothesized s is P(n ≤ nobs; s, b) 

Upper limit sup at CL = 1 – α found from 
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Frequentist upper limit on Poisson parameter 
Upper limit sup at CL = 1 – α found from ps = α.  

nobs = 5,  

b = 4.5 
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Frequentist treatment of nuisance 
parameters in a test 

Suppose we test a value of θ  
with the profile likelihood ratio: 

We want a p-value of θ:  

Wilks’ theorem says in the large sample limit (and under some 
additional conditions) f(tθ|θ,ν) is a chi-square distribution with 
number of degrees of freedom equal to number of parameters of 
interest (number of components in θ). 

Simple recipe for p-value; holds regardless of the values of  
the nuisance parameters!  
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Frequentist treatment of nuisance 
parameters in a test (2) 

But for a finite data sample, f(tθ|θ,ν) still depends on ν. 

So what is the rule for saying whether we reject θ? 

Exact approach is to reject θ only if pθ < α (5%) for all possible ν. 

 Some values of θ might not be excluded for a value of ν 
 known to be disfavoured. 

 Less values of θ rejected → larger interval →  higher 
 probability to cover true value (“over-coverage”). 

But why do we say some values of ν are disfavoured?  If this is 
because of other measurements (say, data y) then include y in the 
model: 

Now ν better constrained, new interval for θ smaller. 
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Profile construction (“hybrid resampling”) 

Approximate procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ (the profiled 
values): 

The resulting confidence interval will have the correct coverage 
for the points  (!, ˆ̂"(!))

. Elsewhere it may under- or over-cover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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Bayesian treatment of nuisance parameters 
Conceptually straightforward:  all parameters have a prior: 

Often  

Often  “non-informative” (broad compared to likelihood). 

Usually  “informative”, reflects best available info. on ν. 

Use with likelihood in Bayes’ theorem: 

To find p(θ|x), marginalize (integrate) over nuisance param.: 
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Prototype analysis in HEP 
Each event yields a collection of numbers 

 x1 = number of muons, x2 = pt of jet, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., signal or background. 

1) What kind of decision boundary best separates the two classes? 

2)  What is optimal test of hypothesis that event sample contains 
 only background? 
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Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
For multivariate data x, not obvious how to construct best test. 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant which  
depends on the size of the test α. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Ingredients for a frequentist test 
In general to carry out a test we need to know the distribution of  
the test statistic t(x), and this means we need the full model P(x|H). 

Often one can construct a test statistic whose distribution  
approaches a well-defined form (almost) independent of the  
distribution of the data, e.g., likelihood ratio to test a value of θ: 

In the large sample limit tθ follows a chi-square distribution with 
number of degrees of freedom = number of components in θ 
(Wilks’ theorem). 

So here one doesn’t need the full model P(x|θ), only the observed  
value of tθ. 
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than naive 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 


