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Outline 

Improving estimates of experimental sensitivity 

Thoughts on multivariate methods 

(Measuring distributions, unfolding) 
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Recap of statistical tests 
Consider test of a parameter µ, e.g., proportional to cross section. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Equivalently define a p-value pµ such that the critical region  
corresponds to pµ < α.  

Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Test statistics and p-values 
Often construct a test statistic, qµ, which reflects the level 
of agreement between the data and the hypothesized value µ. 

For examples of statistics based on the profile likelihood ratio, 
see, e.g., CCGV, EPJC 71 (2011) 1554;  arXiv:1007.1727. 

Usually define qµ such that higher values represent increasing  
incompatibility with the data, so that the p-value of µ is: 

Equivalent formulation of test:  reject µ if pµ < α. 

pdf of qµ assuming µ observed value of qµ 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval depends on the choice of the critical region of the test.  

Put critical region where data are likely to be under assumption of 
the relevant alternative to the µ that’s being tested. 

    Test µ = 0, alternative is µ > 0:  test for discovery. 

    Test µ =  µ0, alternative is µ = 0:  testing all µ0 gives upper limit. 
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p-value for discovery 
Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
specified µ	



maximize L	



The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 

For purposes of setting an upper limit on µ use 

where 

cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Example of a  p-value 
ATLAS, Phys. Lett. B 716 (2012) 1-29 



G. Cowan  Terascale Statistics School 2015 / Statistics for Run II 16 

Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 

So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  

f (q0|0) f (q0|µ′) 

med[q0|µ′] 

q0 
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I.  Discovery sensitivity for counting experiment with b known: 
 

 (a) 
 

 (b)  Profile likelihood  
                   ratio test & Asimov: 

II.  Discovery sensitivity with uncertainty in b, σb: 
 

 (a) 
  
 (b)  Profile likelihood ratio test & Asimov: 

Expected discovery significance for counting  
experiment with background uncertainty 
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 Counting experiment with known background 
Count a number of events n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 



G. Cowan  Terascale Statistics School 2015 / Statistics for Run II 23 

Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Profile likelihood with b uncertain 

This is the well studied “on/off” problem:  Cranmer 2005; 
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,... 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 
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Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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Multivariate analysis in HEP 
Each event yields a collection of numbers 

 x1 = number of muons, x2 = pt of jet, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., signal or background. 

1) What kind of decision boundary best separates the two classes? 

2)  What is optimal test of hypothesis that event sample contains 
 only background? 
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Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
For multivariate data x, not obvious how to construct best test. 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant which  
depends on the size of the test α. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Multivariate methods 
In principle, likelihood ratio provides best classifier and leads also 
to the best test for the presence of signal in full sample. 

But we usually don’t have explicit formulae for f (x|s), f (x|b); 
we only have MC models from which we generate training data: 

 generate x ~ f (x|s)     →     x1,..., xN 
 generate x ~ f (x|b)     →     x1,..., xN 

So instead of the likelihood ratio we try to construct a statistic 
that we can optimize using the training data. 

Many new (and some old) methods: 
 Fisher discriminant, Neural networks, Kernel density  
 methods Support Vector Machines, Decision trees with 
 Boosting, Bagging, Deep Learning, ... 

We continue to important new ideas from Machine Learning 
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The Higgs Machine 
Learning Challenge 

Samples of ATLAS MC  
data for H → ττ and 
backgrounds made publicly 
available through kaggle: 

www.kaggle.com/c/higgs-boson 

1785 teams (1942 people) 
from June-Sep 2014. 
ML experts win easily: 
     M. Gabor -- $7000 
Many new ideas e.g., 
about Deep Learning, 
Cross Validation,... 
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A simple example (2D) 
Consider two variables, x1 and x2, and suppose we have formulas 
for the joint pdfs for both signal (s) and background (b) events (in 
real problems the formulas are usually not available). 

     f(x1|x2) ~ Gaussian, different means for s/b, 
    Gaussians have same σ, which depends on x2, 
    f(x2) ~ exponential, same for both s and b, 
    f(x1, x2) =  f(x1|x2) f(x2): 
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Joint and marginal distributions of x1, x2 

background 

signal 

Distribution f(x2) same for s, b. 

So does x2 help discriminate 
between the two event types? 
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Likelihood ratio for 2D example 
Neyman-Pearson lemma says best critical region is determined 
by the likelihood ratio: 

Equivalently we can use any monotonic function of this as 
a test statistic, e.g., 

Boundary of optimal critical region will be curve of constant ln t, 
and this depends on x2! 
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Contours of constant MVA output 

Exact likelihood ratio Fisher discriminant 
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Contours of constant MVA output 

Multilayer Perceptron 
1 hidden layer with 2 nodes 

Boosted Decision Tree 
200 iterations (AdaBoost) 

Training samples:  105 signal and 105 background events 
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ROC curve 

ROC = “receiver operating  
characteristic” (term from  
signal processing). 
 
Shows (usually) background  
rejection (1-εb) versus  
signal efficiency εs. 
 
Higher curve is better;  
usually analysis focused on 
a small part of the curve. 



G. Cowan  Terascale Statistics School 2015 / Statistics for Run II 42 

Statistics in Run II 
In the last decade there has been an increasing acceptance/popularity 
of multivariate methods, with many new developments entering 
from Machine Learning. 

Run II will also face the same challenges as Run I, needing to  
quantify e.g. discovery significance and exclusion limits.  Still  
need to construct accurate models and make accurate estimates of  
experimental sensitivity e.g. to optimize analyses. 

There is a new particle to study!  Having discovered the Higgs, 
people will now want to measure its properties, e.g., differential 
distributions (→ unfolding). 

There is increased pressure/motivation to fully exploit the 
hard-won data, hence the need to report enough information 
to allow combinations and e.g. future refinements of  
theoretical uncertainties. 
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Extra slides 
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Unfolding 

New goal:  construct  
estimators for the µj (or pj). 

“true” histogram 

Consider a random variable y, goal is to determine pdf f(y). 

If parameterization f(y;θ) known, find e.g. ML estimators    . 

If no parameterization available, construct histogram:   

 !̂
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Migration 

discretize:  data are 

response 
matrix 

Effect of measurement errors:  y = true value, x = observed value, 

 migration of entries between bins, 

 f(y) is ‘smeared out’, peaks broadened. 

Note µ, ν are constants; n subject to statistical fluctuations. 
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Efficiency, background 

efficiency 

Sometimes an observed event is due to a background process: 

Sometimes an event goes undetected: 

βi = expected number of background events in observed histogram. 

For now, assume the βi are known.  
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The basic ingredients 

“true” “observed” 



G. Cowan  Terascale Statistics School 2015 / Statistics for Run II 48 

Summary of ingredients 
‘true’ histogram: 

probabilities: 

expectation values for observed histogram: 

observed histogram: 

response matrix: 

efficiencies: 

expected background: 

These are related by: 
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Maximum likelihood (ML) estimator 
from inverting the response matrix 

Assume  can be inverted: 

Suppose data are independent Poisson: 

So the log-likelihood is 

ML estimator is  
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Example with ML solution 

Catastrophic 
failure??? 
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What went wrong? 

Suppose µ really had a lot of 
fine structure. 

Applying R washes this 
out, but leaves a residual 
structure: 

But we don’t have ν, only n.   R-1 “thinks” fluctuations in n are  
the residual of original fine structure, puts this back into  µ̂.
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ML solution revisited 

For Poisson data the ML estimators are unbiased: 

Their covariance is: 

(Recall these statistical errors were huge for the example shown.) 
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ML solution revisited (2) 
The information inequality gives for unbiased estimators the  
minimum (co)variance bound: 

invert → 

This is the same as the actual variance!  I.e. ML solution gives 
smallest variance among all unbiased estimators, even though 
this variance was huge. 

In unfolding one must accept some bias in exchange for a 
(hopefully large) reduction in variance. 
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Correction factor method 

Nonzero bias unless MC = Nature.  

Often Ci ~ O(1) so statistical errors far smaller than for ML. 
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Reality check on the statistical errors 

Suppose for some bin i we have:  

Example from Bob Cousins 

But according to the estimate, only 10 of the 100 events 
found in the bin belong there; the rest spilled in from outside. 

How can we have a 10% measurement if it is based on only 10 
events that really carry information about the desired parameter? 

(10% stat. 
error) 
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Discussion of correction factor method 

As with all unfolding methods, we get a reduction in statistical 
error in exchange for a bias; here the bias is difficult to quantify 
(difficult also for many other unfolding methods). 

The bias should be small if the bin width is substantially larger  
than the resolution, so that there is not much bin migration. 

So if other uncertainties dominate in an analysis, correction factors 
may provide a quick and simple solution (a “first-look”). 

Still the method has important flaws and it would be best to 
avoid it. 
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Regularized unfolding 
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Regularized unfolding (2) 
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Tikhonov regularization 

Programs:  RUN (Blobel); SVD (Hoecker & Kartvelishvili) 
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SVD implementation of Tikhonov unfolding 
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SVD example 
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Regularization function based on entropy 
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Example of entropy-based unfolding 



G. Cowan  Terascale Statistics School 2015 / Statistics for Run II 64 

Iterative unfolding (“Bayesian”) 

Goal is to estimate probabilities: 

For initial guess take e.g. 

Initial estimators for µ are  

Update according to the rule 

uses Bayes’ theorem here 

Continue until solution stable  
using e.g. χ2 test with previous 
iteration. 
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Estimating systematic uncertainty 
We know that unfolding introduces a bias, but quantifying this 
(including correlations) can be difficult. 

Suppose a model predicts a spectrum 

A priori suppose e.g. θ ≈ 8 ± 2.  More precisely, assign prior π(θ). 
Propagate this into a systematic covariance for the unfolded 
spectrum: 

Often in practice, one doesn’t have π(θ) but rather a few models 
that differ in spectrum.  Not obvious how to convert this into 
a meaningful covariance for the unfolded distribution. 

(Typically large 
positive correlations.) 



G. Cowan  Terascale Statistics School 2015 / Statistics for Run II 66 

Stat. and sys. errors of unfolded solution 
In general the statistical covariance matrix of the unfolded  
estimators is not diagonal; need to report full 

But unfolding necessarily introduces biases as well, corresponding 
to a systematic uncertainty (also correlated between bins). 

 This is more difficult to estimate.  Suppose, nevertheless, 
 we manage to report both Ustat and Usys. 

To test a new theory depending on parameters θ, use e.g. 

Mixes frequentist and Bayesian elements; interpretation of result 
can be problematic, especially if Usys itself has large uncertainty.   
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Folding 
Suppose a theory predicts f(y) → µ (may depend on parameters θ). 

Given the response matrix R and expected background β, this  
predicts the expected numbers of observed events:  

From this we can get the likelihood, e.g., for Poisson data, 

And using this we can fit parameters and/or test, e.g., using 
the likelihood ratio statistic 
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Versus unfolding 
If we have an unfolded spectrum and full statistical and 
systematic covariance matrices, to compare this to a model µ 
compute likelihood 

where 

Complications because one needs estimate of systematic bias Usys; 
also assumes data ~ Gaussian (and difficult to avoid need for this 
approximation). 

Quadratic sum of stat. and sys. errors makes interpretation difficult. 

Even beyond these issues, a test based on the unfolded distribution  
will not in general be as optimal as one obtained through folding  
the theory and comparing it to the uncorrected data. 
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ML solution again 
From the standpoint of testing a theory or estimating its parameters,  
the ML solution, despite catastrophically large errors, is equivalent 
to using the uncorrected data (same information content). 

There is no bias (at least from unfolding), so use 

The estimators of θ should have close to optimal properties: 
zero bias, minimum variance. 

The corresponding estimators from any unfolded solution cannot 
in general match this. 

Ditto for power of statistical tests; ML is optimal. 

Crucial point is to use full covariance, not just diagonal errors. 
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Summary/discussion 
Unfolding can be a minefield and not necessary if goal is to  
compare model with theory. 

Even comparison of uncorrected distribution with future theories  
not a problem, as long as it is reported together with the expected  
background and response matrix. 

 In practice complications because these ingredients have 
 uncertainties, and they must be reported as well.  

Unfolding useful for getting an actual estimate of the distribution 
we think we’ve measured; can e.g. compare with CMS. 

Model test using unfolded distribution should take account of  
the (correlated) bias introduced by the unfolding procedure. 

Unfolded distributions easier to work with in cases where bias 
introduced is small compared to other uncertainties (and thus can 
be neglected). 


