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Outline

• Basic introduction to frequentist vs Bayesian approaches

• Basics of fitting, hypothesis tests and asymptotics

• Treating systematic uncertainties with nuisance parameters

Everything here is a subset of the University of London course:

http://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Some statistics books, papers, etc.
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.
Luca Lista, Statistical Methods for Data Analysis in Particle Physics, 
Springer, 2017.
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006
S. Brandt, Statistical and Computational Methods in Data Analysis, 
Springer, New York, 1998.
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 
083C01 (2020); pdg.lbl.gov sections on probability, statistics, MC.
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Theory ↔ Statistics ↔ Experiment
Theory (model, hypothesis): Experiment (observation):

+ response of measurement
apparatus

= model prediction
data

Uncertainty enters
on many levels

→ quantify with
probability



5G. Cowan / RHUL Physics DESY / U. Hamburg Basics of Statistical Data Analysis

Quick review of probablility
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: x).

Probability = limiting frequency

Probabilities such as

P (string theory is true), 
P (0.117 < αs < 0.119), 
P (Biden wins in 2024),

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

Preferred theories (models, hypotheses, ...) are those  that 
predict a high probability for data “like” the data observed.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior
probabilities were π(H), then it says how these probabilities
should change in the light of the data.

No general prescription for priors (subjective!)
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Parameter estimation
The parameters of a pdf are any constants that characterize it, 

r.v.

Suppose we have a sample of observed values: x = (x1, ..., xn)

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.

i.e., θ indexes a
set of hypotheses.
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Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

biasedlarge
variance

best

We want small (or zero) bias (systematic error):

→ average of repeated measurements should tend to true value.

And we want a small variance (statistical error):
→ small bias & variance are in general conflicting criteria
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Hypothesis, likelihood
Suppose the entire result of an experiment (set of 
measurements) is a collection of numbers x.  

A (simple) hypothesis is a rule that assigns a probability to each 
possible data outcome:

Note:
1)  For the likelihood we treat the data x as fixed.
2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
More undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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The likelihood function for i.i.d.*. data

Consider n independent observations of x:  x1, ..., xn,  where
x follows f(x; θ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed



12G. Cowan / RHUL Physics DESY / U. Hamburg Basics of Statistical Data Analysis

Maximum Likelihood Estimators (MLEs)
We define the maximum likelihood estimators or MLEs to be 
the parameter values for which the likelihood is maximum.

Maximizing L
equivalent to 
maximizing log L

Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but 
in practice they’re very good).
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MLE example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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MLE example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
generate 50  values
using τ = 1:

We find the ML estimate:
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Suppose a measurement produces data x; consider a hypothesis H0
we want to test and alternative H1

H0, H1 specify probability for x: P(x|H0), P(x|H1)

A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
α, assuming H0 is correct,  to observe the data there, i.e.,

P(x ∈ w | H0) ≤ α

Need inequality if data are
discrete.

α is called the size or 
significance level of the test.

If x is observed in the 
critical region, reject H0.

Frequentist hypothesis tests 

data space Ω

critical region w
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Definition of a test (2)
But in general there are an infinite number of possible critical 
regions that give the same size α.

Use the alternative hypothesis H1 to motivate where to place the 
critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:



G. Cowan / RHUL Physics DESY / U. Hamburg Basics of Statistical Data Analysis 17

Classification viewed as a statistical test
Suppose events come in two possible types:  

s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., H0 = b.

Carry out test on many events, each is either of type s or b, i.e., 
here the hypothesis is the “true class label”, which varies randomly 
from event to event, so we can assign to it a frequentist probability.

Select events for which where H0 is rejected as “candidate events of 
type s”.  Equivalent Particle Physics terminology:

background efficiency

signal efficiency
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Example of a test for classification

Suppose we can measure for 
each event a quantity x, where

with 0 ≤ x ≤ 1.

For each event in a mixture of signal (s) and background (b) test

H0 : event is of type b

using a critical region W of the form:  W = {x : x ≤ xc}, where
xc is a constant that we choose to give a test with the desired size α.
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Classification example (2)

Suppose we want α = 10-4.     Require:

and therefore 

For this test (i.e. this critical region W), the power with respect 
to the signal hypothesis (s) is

Note:  the optimal size and power is a separate question that will 
depend on goals of the subsequent analysis.
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Test statistic based on likelihood ratio 
How can we choose a test’s critical region in an ‘optimal way’, in 
particular if the data space is multidimensional?

Neyman-Pearson lemma states:
For a test of H0 of size α, to get the highest power with respect to the
alternative H1 we need for all x in the critical region W

inside W and  ≤ cα outside, where cα is a constant chosen to give a 
test of the desired size.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.
G. Cowan / RHUL Physics

”likelihood 
ratio (LR)”
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f(x|H) for a set of
observations x = (x1,...xn). 

We observe a single point in this space: xobs. 

How can we quantify the level of compatibility between the data 
and the predictions of H?

Decide what part of 
the data space represents 
equal or less compatibility  
with H than does the 
point xobs.  (Not unique!) 

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj



p-values
Express level of compatibility between data and hypothesis 
(sometimes ‘goodness-of-fit’) by giving the p-value for H:

= probability, under assumption of H, to observe data 
with equal or lesser compatibility with H relative to the 
data we got. 

= probability, under assumption of H, to observe data as      
discrepant with H as the data we got or more so.

Basic idea:  if there is only a very small probability to find data
with even worse (or equal) compatibility, then H is “disfavoured by 
the data”.

If the p-value is below a user-defined threshold α (e.g. 0.05) then H
is rejected (equivalent to hypothesis test as discussed previously).

G. Cowan / RHUL Physics DESY / U. Hamburg Basics of Statistical Data Analysis 22



23G. Cowan / RHUL Physics DESY / U. Hamburg Basics of Statistical Data Analysis

p-value of H is not P(H)

where π(H) is the prior probability for H.

The p-value of H is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation). 

If we do define P(H), e.g., in Bayesian statistics as a degree of 
belief,  then we need to use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

Events could be from signal process or from background –
we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about s, e.g.,

test s = 0 (rejecting H0 ≈ “discovery of signal process”)

test all non-zero s (values not rejected =  confidence interval)

In both cases need to ask what is relevant alternative hypothesis.



25G. Cowan / RHUL Physics DESY / U. Hamburg Basics of Statistical Data Analysis

Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe nobs = 5.  

Should we claim evidence for a new discovery?  

Give p-value for hypothesis s = 0:
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Significance from p-value
Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

in ROOT:
p = 1 - TMath::Freq(Z)
Z = TMath::NormQuantile(1-p)

in python (scipy.stats):
p = 1 - norm.cdf(Z) = norm.sf(Z)
Z = norm.ppf(1-p)

Result Z is a “number of sigmas”.  Note this does not mean that 
the original data was Gaussian distributed.
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Poisson counting experiment: discovery significance

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended 
to cover, e.g., hidden 
systematics, plausibility signal 
model, compatibility of data with 
signal, “look-elsewhere effect” 
(~multiple testing), etc.

Equivalent significance for p = 1.7 × 10-4:  

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”)
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Confidence intervals by inverting a test
In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Confidence intervals for a parameter θ can be found by 
defining a test of the hypothesized value θ (do this for all θ): 

Specify values of the data that are ‘disfavoured’ by θ
(critical region) such that P(data in critical region|θ) ≤ α
for a prespecified α, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ.

Now invert the test to define a confidence interval as:

set of θ values that are not rejected in a test of size α
(confidence level CL is 1- α).
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Relation between confidence interval and p-value
Equivalently we can consider a significance test for each
hypothesized value of θ, resulting in a p-value, pθ.  

If pθ ≤ α, then we reject θ. 

The confidence interval at CL = 1 – α consists of those values of 
θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which pθ > α. 

In practice find by setting pθ = α and solve for θ.

For a multidimensional parameter space θ = (θ1,... θM) use same 
idea – result is a confidence “region” with boundary determined 
by pθ = α.
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Coverage probability of confidence interval
If the true value of θ is rejected, then it’s not in the confidence 
interval.  The probability for this is by construction (equality for 
continuous data):

P(reject θ|θ) ≤ α = type-I error rate

Therefore, the probability for the interval to contain or “cover” θ is

P(conf. interval “covers” θ|θ) ≥ 1 – α

This assumes that the set of θ values considered includes the true 
value, i.e., it assumes the composite hypothesis P(x|H,θ).
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Frequentist upper limit on Poisson parameter
Consider again the case of observing n ~ Poisson(s + b).

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found from
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n ~ Poisson(s+b):  frequentist upper limit on s
For low fluctuation of n, formula can give negative result for sup; 
i.e. confidence interval is empty;  all values of s ≥ 0 have ps ≤ α.
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Limits near a boundary of the parameter space
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44
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Approximate confidence intervals/regions 
from the likelihood function

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define

so higher tθ means worse agreement between θ and the data.

p-value of θ therefore 

need pdf
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Confidence region from Wilks’ theorem
Wilks’ theorem says (in large-sample limit and provided 
certain conditions hold...)

chi-square dist. with # d.o.f. = 
# of components in θ = (θ1, ..., θn).

Assuming this holds, the p-value is

To find boundary of confidence region set pθ= α and solve for tθ:

Recall also 

← set equal to α
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Confidence region from Wilks’ theorem (cont.)
i.e., boundary of confidence region in θ space is where

For example, for 1 – α = 68.3% and n = 1 parameter,

and so the 68.3% confidence level interval is determined by

Same as recipe for finding the estimator’s standard deviation, i.e.,

is a 68.3% CL confidence interval.
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Example of interval from ln L(θ)
For n=1 parameter, CL = 0.683, Qα = 1.

Our exponential 
example, now with
only n = 5 events.

Can report ML estimate
with approx. confidence
interval from ln Lmax – 1/2
as “asymmetric error bar”:
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Multiparameter case

For increasing number of parameters, CL = 1 – α decreases for
confidence region determined by a given 
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Multiparameter case (cont.)

Equivalently, Qα increases with n for a given CL = 1 – α.
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Systematic uncertainties and nuisance parameters
In general, our model of the data is not perfect:

x

P
(x

|μ
)

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter ↔ systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Prototype search analysis 
Search for signal in a region of phase space; result is histogram
of some variable x giving numbers:

Assume the ni are Poisson distributed with expectation values

signal

where

background

strength parameter
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Prototype analysis (II)
Often also have a subsidiary measurement that constrains some
of the background and/or shape parameters:

Assume the mi are Poisson distributed with expectation values

nuisance parameters (θs, θb,btot)
Likelihood function is
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The profile likelihood ratio
Base significance test on the profile likelihood ratio:

maximizes L for
specified μ

maximize L

Define critical region of test of μ by the region of data space
that gives the lowest values of λ(μ). 

Important advantage of profile LR is that its distribution 
becomes independent of nuisance parameters in large sample 
limit.
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Test statistic for discovery
Suppose relevant alternative to background-only (μ = 0) is μ ≥ 0.

So take critical region for test of μ = 0 corresponding to high q0
and > 0 (data characteristic for μ ≥ 0).

That is, to test background-only hypothesis define statistic

i.e. here only large (positive) observed signal strength is 
evidence  against the background-only hypothesis.

Note that even though here physically μ ≥ 0, we allow 
to be negative.  In large sample limit its distribution becomes
Gaussian, and this will allow us to write down simple 
expressions for distributions of our test statistics.

µ̂

µ̂
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Distribution of q0 in large-sample limit
Assuming approximations valid in the large sample (asymptotic)
limit, we can write down the full distribution of q0 as

The special case μ′ = 0 is a “half chi-square” distribution: 

In large sample limit, f(q0|0) independent of nuisance parameters;
f(q0|μ′)  depends on nuisance parameters through σ.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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p-value for discovery
Large q0 means increasing incompatibility between the data
and hypothesis, therefore p-value for an observed q0,obs is

use e.g. asymptotic formula

From p-value get 
equivalent significance,
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Cumulative distribution of q0, significance
From the pdf, the cumulative distribution of q0 is found to be 

The special case μ′ = 0 is 

The p-value of the μ = 0 hypothesis is

Therefore the discovery significance Z is simply

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formula 

μ = param. of interest
b = nuisance parameter
Here take s known, τ = 1.

Asymptotic formula is 
good approximation to 5σ
level (q0 = 25) already for
b ~ 20.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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How to read the p0 plot
The “local” p0 means the p-value of the background-only
hypothesis obtained from the test of μ = 0 at each individual 
mH, without any correct for the Look-Elsewhere Effect.

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (μ = 1) at each mH.

ATLAS, Phys. Lett. B 716 (2012) 1-29

The blue band gives the
width of the distribution
(±1σ) of significances
under assumption of the
SM Higgs.



I.e. when setting an upper limit, an upwards fluctuation of the data 
is not taken to mean incompatibility with the hypothesized μ :  

From observed qμ find p-value:

Large sample approximation:   

To find upper limit at CL = 1-α, set pμ = α and solve for μ.
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Test statistic for upper limits
For purposes of setting an upper limit on μ use

where

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formulae 
Consider again n ~ Poisson(μs + b), m ~ Poisson(τb)
Use qμ to find p-value of hypothesized μ values.

E.g. f(q1|1) for p-value of μ =1.

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e.,
q1 = 2.69 or  Z1 = √q1 =  1.64.

Median[q1 |0] gives “exclusion 
sensitivity”.

Here asymptotic formulae good
for s = 6, b = 9.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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How to read the green and yellow limit plots
For every value of mH, find the upper limit on μ.

Also for each mH, determine the distribution of upper limits μup one 
would obtain under the hypothesis of μ = 0.  

The dashed curve is the median μup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution.

ATLAS, Phys. Lett. B 716 (2012) 1-29
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Finally
One lecture only enough for a brief introduction to:

Parameter estimation, maximum likelihood
Hypothesis tests, p-values
Limits (confidence intervals/regions)
Systematics (nuisance parameters)
Asymptotics (Wilks’ theorem)

Final thought:  once the basic formalism is fixed, most of the 
work focuses on writing down the likelihood, e.g., P(x|θ), and 
including in it enough parameters to adequately describe the data 
(true for both Bayesian and frequentist approaches).
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Extra slides



G. Cowan / RHUL Physics DESY / U. Hamburg Basics of Statistical Data Analysis 56

I.  Discovery sensitivity for counting experiment with b known:

(a)

(b)  Profile likelihood 
ratio test & Asimov:

II.  Discovery sensitivity with uncertainty in b, σb:

(a)

(b)  Profile likelihood ratio test & Asimov:

Expected discovery significance for counting
experiment with background uncertainty
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Counting experiment with known background
Count a number of events n ~ Poisson(s+b), where

s = expected number of events from signal,

b = expected number of background events.

Usually convert to equivalent significance:

To test for discovery of signal compute p-value of s = 0 hypothesis,

where Φ is the standard Gaussian cumulative distribution, e.g.,
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7.

To characterize sensitivity to discovery, give expected (mean
or median) Z under assumption of a given s.
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s/√b for expected discovery significance
For large s + b, n → x ~ Gaussian(μ,σ) , μ = s + b, σ = √(s + b).

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),:

Significance for rejecting s = 0 is therefore

Expected (median) significance assuming signal rate s is
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Better approximation for significance
Poisson likelihood for parameter s is

So the likelihood ratio statistic for testing s = 0 is

To test for discovery use profile likelihood ratio:

For now 
no nuisance 
params.
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Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks’ theorem), 

To find median[Z|s], let n → s + b (i.e., the Asimov data set):

This reduces to s/√b for s << b.
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n ~ Poisson(s+b),  median significance,
assuming s, of the hypothesis s = 0

“Exact” values from MC,
jumps due to discrete data.

Asimov √q0,A good approx.
for broad range of s, b.

s/√b only good for s ≪ b.

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727
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Extending s/√b to case where b uncertain
The intuitive explanation of s/√b is that it compares the signal,
s, to the standard deviation of n assuming no signal, √b.

Now suppose the value of b is uncertain, characterized by a 
standard deviation σb.

A reasonable guess is to replace √b by the quadratic sum of
√b and σb, i.e.,

This has been used to optimize some analyses e.g. where
σb cannot be neglected.
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Profile likelihood with b uncertain

This is the well studied “on/off” problem:  Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...

Measure two Poisson distributed values:

n ~ Poisson(s+b)         (primary or “search” measurement)

m ~ Poisson(τb) (control measurement, τ known)

The likelihood function is

Use this to construct profile likelihood ratio (b is nuisance
parameter):
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Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

and in particular to test for discovery (s = 0), 
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Asymptotic significance
Use profile likelihood ratio for q0, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

Essentially same as in:



Or use the variance of b = m/τ,  
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Asimov approximation for median significance
To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

n → s + b
m → τb

,   to eliminate τ:ˆ
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Limiting cases

Expanding the Asimov formula in powers of s/b and
σb2/b (= 1/τ) gives

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated 
with the Asimov data set.
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Testing the formulae:  s = 5
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Using sensitivity to optimize a cut
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Summary on discovery sensitivity

For large b, all formulae OK.

For small b, s/√b and s/√(b+σb2) overestimate the significance.

Could be important in optimization of searches with
low background.

Formula maybe also OK if model is not simple on/off experiment, 
e.g., several background control measurements (check this).

Simple formula for expected discovery significance based on
profile likelihood ratio test and Asimov approximation:
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Classification example (3)

Suppose that the prior probabilities for an event to be of  
type s or b are:

πs = 0.001
πb = 0.999

The “purity” of the selected signal sample (events where b 
hypothesis rejected) is found using Bayes’ theorem:
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Large-sample (asymptotic) properties of MLEs
Suppose we have an i.i.d. data sample of size n:  x1,...,xn
In the large-sample (or “asymptotic”) limit (n → ∞) and assuming 
regularity conditions one can show that the likelihood and MLE 
have several important properties.

The regularity conditions include:  
• the boundaries of the data space cannot depend on the 

parameter;
• the parameter cannot be on the edge of the parameter space;
• lnL(θ) must be differentiable;
• the only solution to 𝜕lnL/𝜕θ = 0 is θ.^

In the slides immediately following the properties are shown 
without proof for a single parameter; the corresponding 
properties hold also for the multiparameter case, θ = (θ1,...,θm).
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log-likelihood becomes quadratic

The likelihood function becomes Gaussian in shape, i.e.
the log-likelihood becomes quadratic (parabolic).

The MLE becomes increasingly precise as the (log)-likelihood 
becomes more tightly concentrated about its peak,
but L(θ) = P(x|θ) is the probability for x, not a pdf for θ.
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The MLE converges to the true parameter value

In the large-sample limit, the MLE converges in probability
to the true parameter value.

That is, for any ε > 0, 

The MLE is said to be consistent.
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MLE is asymptotically unbiased
In general the MLE can be biased, but in the large-sample limit, 
this bias goes to zero:

(Recall for the exponential parameter we found the bias was
identically zero regardless of the sample size n.)
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The MLE’s variance approaches the MVB

In the large-sample limit, the variance of the MLE approaches 
the minimum-variance bound, i.e., the information inequality 
becomes an equality (and bias goes to zero):

The MLE is said to be asymptotically efficient.



77G. Cowan / RHUL Physics DESY / U. Hamburg Basics of Statistical Data Analysis

The MLE’s distribution becomes Gaussian
In the large-sample limit, the pdf of the MLE becomes Gaussian,  

For example, exponential MLE 
with sample size n = 100.

Note that for exponential, MLE 
is arithmetic average, so 
Gaussian MLE seen to stem 
from Central Limit Theorem.

where is the minimum variance bound (note bias is zero).
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Distribution of MLE of exponential parameter
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The Bayesian approach to limits
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this 
reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf p(θ|x) to give interval with any desired
probability content.  

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from
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Bayesian prior for Poisson parameter

Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0.

Could try to reflect ‘prior ignorance’ with e.g. 

Not normalized; can be OK provided L(s) dies off quickly for large s.

Not invariant under change of parameter — if we had used instead 
a flat prior for a nonlinear function of s, then this would imply a 
non-flat prior for s.

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; or viewed as a recipe for producing an 
interval whose frequentist properties can be studied (e.g., coverage 
probability, which will depend on true s). 
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Bayesian upper limit with flat prior for s
Put Poisson likelihood and flat prior into Bayes’ theorem:

Normalize to unit area:

Upper limit sup determined by requiring 

upper incomplete
gamma function
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Bayesian interval with flat prior for s
Solve to find limit sup:

For special case b = 0, Bayesian upper limit with flat prior
numerically same as one-sided frequentist case (‘coincidence’). 

where
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Bayesian interval with flat prior for s
For b > 0 Bayesian limit is everywhere greater than the (one 
sided) frequentist upper limit.

Never goes negative.  Doesn’t depend on b if n = 0.


