
1G. Cowan / RHUL Physics Terascale Statistics 2024 / Lecture 1

Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan

DESY, Hamburg 
2-5 April 2024

Statistics for Particle Physics
Lecture 1

https://indico.desy.de/event/43398/
Terascale Statistics School



2G. Cowan / RHUL Physics Terascale Statistics 2024 / Lecture 1

Outline
→ Tuesday 11:05  Introduction
      Probability
      Hypothesis tests, parameter estimation

 Wednesday 9:15 Confidence limits
      Systematic uncertainties
      General analysis, asymptotics

 Thursday 16:00 “Errors on errors”

More resources in the University of London course:

  https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Theory ↔ Statistics ↔ Experiment
Theory (model, hypothesis): Experiment (observation):

+ response of measurement
apparatus

= model prediction
data

Uncertainty enters
on many levels

→  quantify with
probability
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A quick review of probability

Frequentist (A = outcome of
repeatable observation)

Subjective (A = hypothesis)

Conditional probability:

A and B are independent iff:

I.e. if A, B independent, then

E.g. rolling a die, 
outcome n = 1,2,...,6:
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Bayes’ theorem
Use definition of conditional probability and

→ (Bayes’ theorem)

If set of all outcomes S = ∪i Ai 
with Ai disjoint, then law of total 
probability for P(B) says

so that Bayes’ theorem becomes

Bayes’ theorem holds regardless of how probability is 
interpreted (frequency, degree of belief...).

B ∩ Ai

Ai

B

S
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: x).

 Probability = limiting frequency

Probabilities such as

 P (string theory is true), 
 P (0.117 < αs < 0.119), 
 P (Biden wins in 2024),

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

Preferred theories (models, hypotheses, ...) are those  that 
predict a high probability for data “like” the data observed.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior
probabilities were π(H), then it says how these probabilities
should change in the light of the data.
 No general prescription for priors (subjective!)
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Hypothesis, likelihood
Suppose the entire result of an experiment (set of 
measurements) is a collection of numbers x.  

A (simple) hypothesis is a rule that assigns a probability to each 
possible data outcome:

Note:
 1)  For the likelihood we treat the data x as fixed.
 2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
more undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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Suppose a measurement produces data x; consider a hypothesis H0 
we want to test and alternative H1

 H0, H1 specify probability for x: P(x|H0), P(x|H1)

A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
α, assuming H0 is correct,  to observe the data there, i.e.,

  P(x ∈ w | H0) ≤ α

Need inequality if data are
discrete.

α is called the size or 
significance level of the test.

If x is observed in the 
critical region, reject H0.

Frequentist hypothesis tests 

data space Ω

critical region w
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Definition of a test (2)
But in general there are an infinite number of possible critical 
regions that give the same size α.

Use the alternative hypothesis H1 to motivate where to place the 
critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:
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Classification viewed as a statistical test
Suppose events come in two possible types:  

      s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., H0 = b.

Carry out test on many events, each is either of type s or b, i.e., 
here the hypothesis is the “true class label”, which varies randomly 
from event to event, so we can assign to it a frequentist probability.

Select events for which where H0 is rejected as “candidate events of 
type s”.  Equivalent Particle Physics terminology:

background efficiency

signal efficiency
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Example of a test for classification

Suppose we can measure for 
each event a quantity x, where

with 0 ≤ x ≤ 1.

For each event in a mixture of signal (s) and background (b) test

 H0 : event is of type b

using a critical region W of the form:  W = { x : x ≤ xc }, where
xc is a constant that we choose to give a test with the desired size α.
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Classification example (2)

Suppose we want α = 10-4.     Require:

and therefore 

For this test (i.e. this critical region W), the power with respect 
to the signal hypothesis (s) is

Note:  the optimal size and power is a separate question that will 
depend on goals of the subsequent analysis.
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Classification example (3)

Suppose that the prior probabilities for an event to be of  
type s or b are:

   πs = 0.001
   πb = 0.999

The “purity” of the selected signal sample (events where b 
hypothesis rejected) is found using Bayes’ theorem:
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f (x|H) for a set of
observations x = (x1,...xn). 

We observe a single point in this space: xobs. 

How can we quantify the level of compatibility between the data 
and the predictions of H?

Decide what part of 
the data space represents 
equal or less compatibility  
with H than does the 
point xobs.  (Not unique!) 

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj



p-values
Express level of compatibility between data and hypothesis 
(sometimes ‘goodness-of-fit’) by giving the p-value for H:

= probability, under assumption of H, to observe data 
with equal or lesser compatibility with H relative to the 
data we got. 

= probability, under assumption of H, to observe data as      
discrepant with H as the data we got or more so.

Basic idea:  if there is only a very small probability to find data
with even worse (or equal) compatibility, then H is “disfavoured by 
the data”.

If the p-value is below a user-defined threshold α (e.g. 0.05) then H 
is rejected (equivalent to hypothesis test of size α as seen earlier).
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p-value of H is not P(H)

where π(H) is the prior probability for H.

The p-value of H is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H 
represents a repeatable observation). 

If we do define P(H), e.g., in Bayesian statistics as a degree of 
belief,  then we need to use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

 Events could be from signal process or from background – 
 we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about s, e.g.,

     test s = 0 (rejecting H0 ≈ “discovery of signal process”)

     test all non-zero s  (values not rejected =  confidence interval)

In both cases need to ask what is relevant alternative hypothesis.
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Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe nobs = 5.  

Should we claim evidence for a new discovery?  

    Give p-value for hypothesis s = 0, suppose relevant alt. is s > 0.
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Significance from p-value
Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

in ROOT:
p = 1 - TMath::Freq(Z)
Z = TMath::NormQuantile(1-p)

in python (scipy.stats):
p = 1 - norm.cdf(Z) = norm.sf(Z)
Z = norm.ppf(1-p)

Result Z is a “number of sigmas”.  Note this does not mean that 
the original data was Gaussian distributed.
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Poisson counting experiment: discovery significance

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended 
to cover, e.g., hidden 
systematics, plausibility signal 
model, compatibility of data with 
signal, “look-elsewhere effect” 
(~multiple testing), etc.

Equivalent significance for p = 1.7 × 10-4:  

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”)
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Parameter estimation
The parameters of a pdf are any constants that characterize it, 

r.v.

Suppose we have a sample of observed values: x = (x1, ..., xn)

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.

i.e., θ indexes a
set of hypotheses.
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Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

We want small (or zero) bias (systematic error):

→  average of repeated measurements should tend to true value.

And we want a small variance (statistical error):
→  small bias & variance are in general conflicting criteria

biasedlarge
variance

best
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The likelihood function for i.i.d.* data

Consider n independent observations of x:  x1, ..., xn,  where 
x follows f (x; θ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed
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Maximum Likelihood Estimators (MLEs)
We define the maximum likelihood estimators or MLEs to be 
the parameter values for which the likelihood is maximum.

Maximizing L 
equivalent to 
maximizing log L

Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but 
in practice they’re very good).
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MLE example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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MLE example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
 generate 50  values
 using τ = 1:

We find the ML estimate:
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MLE example:  parameter of exponential pdf (3)

For the MLE

For the exponential distribution one has for mean, variance:

we therefore find

→

→
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian − (almost) always true for 
ML in large sample limit.
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The information inequality
The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only MLE).  For a single parameter:

= MVB    (Minimum 
                  Variance Bound)

Proof in Exercise 6.6 of SDA, https://www.pp.rhul.ac.uk/~cowan/sda/prob/prob_6.pdf 

“Efficiency” of an estimator = MVB / actual variance.

An estimator whose variance equals the MVB is said to be efficient.  

where 
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MVB for MLE of exponential parameter

We found for the exponential parameter the MLE 

and we showed b = 0, hence 𝜕b/𝜕τ = 0.

Find 

We find

and since E[ti] = τ for all i,

and therefore So here the MLE is efficient..

,
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Large-sample (asymptotic) properties of MLEs
Suppose we have an i.i.d. data sample of size n:  x1,...,xn
In the large-sample (or “asymptotic”) limit (n → ∞) and assuming 
regularity conditions one can show that the likelihood and MLE 
have several important properties.

The regularity conditions include:  
• the boundaries of the data space cannot depend on the 

parameter;
• the parameter cannot be on the edge of the parameter space;
• ln L(θ) must be differentiable;
• the only solution to 𝜕ln L/𝜕θ = 0 is θ.^

In the slides immediately following, the properties are shown 
without proof for a single parameter; the corresponding 
properties hold also for the multiparameter case, θ = (θ1,..., θm).
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log-likelihood becomes quadratic

The likelihood function becomes Gaussian in shape, i.e. 
the log-likelihood becomes quadratic (parabolic).

The MLE becomes increasingly precise as the (log)-likelihood 
becomes more tightly concentrated about its peak,
but L(θ) = P(x|θ) is the probability for x, not a pdf for θ.
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The MLE converges to the true parameter value

In the large-sample limit, the MLE converges in probability
to the true parameter value.

That is, for any ε > 0, 

The MLE is said to be consistent.
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MLE is asymptotically unbiased
In general the MLE can be biased, but in the large-sample limit, 
this bias goes to zero:

(Recall for the exponential parameter we found the bias was
identically zero regardless of the sample size n.)
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The MLE’s variance approaches the MVB

In the large-sample limit, the variance of the MLE approaches 
the minimum-variance bound, i.e., the information inequality 
becomes an equality (and bias goes to zero):

The MLE is said to be asymptotically efficient.
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The MLE’s distribution becomes Gaussian
In the large-sample limit, the pdf of the MLE becomes Gaussian,  

For example, exponential MLE 
with sample size n = 100.

Note that for exponential, MLE 
is arithmetic average, so 
Gaussian MLE seen to stem 
from Central Limit Theorem.

where is the minimum variance bound (note bias is zero).
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Distribution of MLE of exponential parameter
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Variance of estimators: graphical method
Expand ln L(θ) about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→  to get , change θ away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Extra slides
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Statistical Data Analysis
Lecture 9-2

• Goodness-of-fit from the likelihood ratio

• Wilks’ theorem

• MLE and goodness-of-fit all in one
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Goodness of fit from the likelihood ratio
Suppose we model data using a likelihood L(μ) that depends on N
parameters μ = (μ1,..., μΝ).  Define the statistic

where μ is the ML estimator for μ.  Value of tμ reflects agreement 
between hypothesized μ and the data.  

 Good agreement means μ ≈ μ, so tμ is small;

 Larger tμ means less compatibility between data and μ.

⌃

⌃

Quantify “goodness of fit” with p-value:

need this pdf
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Likelihood ratio (2)
Now suppose the parameters μ = (μ1,..., μΝ) can be determined by
another set of parameters θ = (θ1,..., θM), with M < N.

E.g., curve fit with  μi = E[yi] = μ (xi; θ), i = 1,...,N, θ = (θ1,..., θM).

fit N parameters

fit M parameters

To get p-value, need pdf f (tμ|μ(θ)).

Want to test hypothesis that the true model is somewhere in the 
subspace μ = μ(θ) versus the alternative of the full parameter 
space μ.   Generalize the LR test statistic to be
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Wilks’ Theorem
Wilks’ Theorem: if the hypothesized μi(θ), i = 1,...,N, are true for 
some choice of the parameters θ = (θ1,..., θM), then in the large 
sample limit (and provided regularity conditions are satisfied)

follows a chi-square distribution for 
N – M degrees of freedom.

MLE of (θ1,..., θM) 

MLE of (μ1,..., μΝ) 

The regularity conditions include: the model in the numerator of 
the likelihood ratio is “nested” within the one in the denominator, 
i.e., μ(θ) is a special case of μ = (μ1,..., μΝ).

Proof boils down to having all estimators ~ Gaussian.



46G. Cowan / RHUL Physics Terascale Statistics 2024 / Lecture 1

Wilks’ Theorem (2)

The chi-square pdf for −2lnλ breaks down:

 if the sample size is too small;

 if the true value of a parameter is on the boundary of the
 allowed parameter space;

 if the model in the numerator is not a special case of the
 denominator (models must be “nested”);

 if variance of estimators of any components of μ too large 
(e.g., parameter refers to location of a feature not present 
in the null hypothesis, such as the position of a peak).
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Goodness of fit with Gaussian data
Suppose the data are N independent Gaussian distributed values:

knownwant to estimate

Likelihood:

Log-likelihood:

ML estimators:

N measurements and N parameters ( = “saturated model”)
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Likelihood ratio for Gaussian data
Now suppose μ = μ(θ), e.g., in an LS fit with μi(θ) = μ(xi; θ).

The goodness-of-fit statistic for the test of the hypothesis
μ(θ) becomes

Here tμ is the same as χ2
min from an LS fit.

So Wilks’ theorem formally states the property that we claimed
for the minimized chi-squared from an LS fit with N 
measurements and M fitted parameters.

chi-square pdf for N-M 
degrees of freedom



49G. Cowan / RHUL Physics Terascale Statistics 2024 / Lecture 1

Likelihood ratio for Poisson data
Suppose the data are a set of values n = (n1,..., nΝ), e.g., the
numbers of events in a histogram with N bins.

Assume ni ~ Poisson(νi), i = 1,..., N, all independent.  

First (for LR denominator) treat ν = (ν1,..., νΝ) as all adjustable:

Likelihood:

Log-likelihood:

ML estimators:
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Goodness of fit with Poisson data (2)
For LR numerator find ν(θ) with M fitted parameters θ = (θ1,..., θM):

Wilks’ theorem:  in large-sample limit  

Exact in large sample limit; in practice good approximation for 
surprisingly small ni (~several).

As before use tν to get p-value of ν(θ),
independent of θ

if ni = 0, skip log term
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Goodness of fit with multinomial data

Similar if data n = (n1,..., nΝ) follow multinomial distribution:

E.g. histogram with N bins but fix: 

Log-likelihood:

ML estimators: (Only N-1 independent; one
is ntot minus sum of rest.)
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Goodness of fit with multinomial data (2)

The likelihood ratio statistics become:

One less degree of freedom than in Poisson case because 
effectively only N-1 parameters fitted in denominator of LR.

Wilks:  in large sample limit

if ni = 0, skip term
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Estimators and g.o.f. all at once
Evaluate numerators with θ (not its estimator); if any ni = 0, 
omit the corresponding log terms:

(Poisson)

(Multinomial)

These are equal to the corresponding -2 ln L(θ) plus terms not 
depending on θ, so minimizing them gives the usual ML 
estimators for θ.

The minimized value gives the statistic tν, so we get
goodness-of-fit for free.
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Examples of ML/LS fits
Unbinned maximum likelihood (mlFit.py, minimize negLogL)

No useful measure
of goodness-of-fit
from unbinned ML.
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Examples of ML/LS fits
Least Squares fit (histFit.py, minimize chi2LS)

χ 
2
min = 32.7

ndof = 38
p = 0.71

Many bins with few 
entries, LS not 
expected to be 
reliable.
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Examples of ML/LS fits
Multinomial maximum likelihood fit (histFit.py, minimize chi2M)

χ 
2
min = 35.3

ndof = 37
p = 0.55

Essentially same result
as unbinned ML.
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Some statistics books, papers, etc.
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.
Luca Lista, Statistical Methods for Data Analysis in Particle Physics, 
Springer, 2017.
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006
S. Brandt, Statistical and Computational Methods in Data Analysis, 
Springer, New York, 1998.
R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 
083C01 (2022); pdg.lbl.gov sections on probability, statistics, MC.
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Some distributions
Distribution/pdf Example use in Particle Physics
Binomial   Branching ratio
Multinomial  Histogram with fixed N
Poisson   Number of events found
Uniform   Monte Carlo method
Exponential  Decay time
Gaussian   Measurement error
Chi-square   Goodness-of-fit
Cauchy   Mass of resonance
Landau    Ionization energy loss
Beta    Prior pdf for efficiency
Gamma   Sum of exponential variables
Student’s t   Resolution function with adjustable tails
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Binomial distribution

Consider N independent experiments (Bernoulli trials):
outcome of each is ‘success’ or ‘failure’,
probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 ≤ n ≤  N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

But order not important; there are

ways (permutations) to get n successes in N trials, total 
probability for n is sum of probabilities for each permutation.
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Binomial distribution  (2)

The binomial distribution is therefore

random
variable

parameters

For the expectation value and variance we find:
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Binomial distribution  (3)
Binomial distribution for several values of the parameters:

Example:  observe N decays of W±,  the number n of which are 
W→μν is a binomial r.v., p = branching ratio.
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Multinomial distribution
Like binomial but now m outcomes instead of two, probabilities are

For N trials we want the probability to obtain:

n1 of outcome 1,
n2 of outcome 2,
 ⠇
nm of outcome m.

This is the multinomial distribution for
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Multinomial distribution (2)
Now consider outcome i as ‘success’, all others as ‘failure’.

→ all ni individually binomial with parameters N, pi

for all i

One can also find the covariance to be

Example:  represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution
Consider binomial n in the limit

→ n follows the Poisson distribution:

Example:  number of scattering events
n with cross section σ found for a fixed
integrated luminosity, with
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Uniform distribution
Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is:

Notation:  x follows a uniform distribution between α and β

write as: x ~ U[α,β]
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Very often used with  α = 0, β = 1 (e.g., Monte Carlo method).

For any r.v. x with pdf f (x), cumulative distribution F(x), the 
function  y = F(x) is uniform in [0,1]:

Uniform distribution (2)

because f (x) = dF/dx = dy/dx
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Exponential distribution
The exponential pdf for the continuous r.v. x is defined by:
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Example:  proper decay time t of an unstable particle

(τ = mean lifetime)

Lack of memory (unique to exponential):

Exponential distribution (2)

Question for discussion:

A cosmic ray muon is created 30 km high in the atmosphere, 
travels to sea level and is stopped in a block of scintillator, giving a 
start signal at t0.  At a time t it decays to an electron giving a stop 
signal.  What is distribution of the difference between stop and 
start times, i.e., the pdf of t – t0 given t > t0?
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Gaussian (normal) distribution
The Gaussian (normal) pdf for a continuous r.v. x is defined by:

N.B. often μ, σ2 denote
mean, variance of any
r.v., not only Gaussian.
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Standardized random variables
If a random variable y has pdf f (y) with mean μ and std. dev. σ, 
then the standardized variable

has mean of zero and standard deviation of 1.

Often work with the standard Gaussian distribution (μ = 0. σ = 1)
using notation:

Then e.g. y = μ + σx follows

has the pdf 
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Multivariate Gaussian distribution
Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

Marginal pdf of each xi is Gaussian with mean μi, standard 
deviation σi = √Vii .
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Two-dimensional Gaussian distribution

where ρ = cov[x1, x2]/(σ1σ2) 
is the correlation coefficient.
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Chi-square (χ2) distribution
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by

n = 1, 2, ... =  number of ‘degrees of
                       freedom’ (dof)

For independent Gaussian xi, i = 1, ..., n, means μi, variances σi2,

follows χ2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction
with method of least squares.
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Cauchy (Breit-Wigner) distribution
The Breit-Wigner pdf for the continuous r.v. x is defined by

(Γ = 2, x0 = 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] → ∞.

x0 = mode (most probable value)

Γ = full width at half maximum

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ...

Γ = decay rate (inverse of mean lifetime)
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Landau distribution
For a charged particle with β = ν /c traversing a layer of matter
of thickness d, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

+ - + - 
- + - + 

β

d

Δ
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Landau distribution  (2)

Long ‘Landau tail’
     →  all moments ∞

Mode (most probable 
value) sensitive to β ,
 →  particle i.d.
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Beta distribution

Often used to represent pdf 
of continuous r.v. nonzero only
between finite limits, e.g.,
y = a0 + a1x,    a0 ≤ y ≤ a0 + a1
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Gamma distribution

Often used to represent pdf 
of continuous r.v. nonzero only
in [0,∞].

Also e.g. sum of n exponential
r.v.s or time until nth event
in Poisson process ~ Gamma
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Student's t distribution

ν = number of degrees of freedom
      (not necessarily integer)

ν = 1 gives Cauchy,

ν → ∞ gives Gaussian.
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Student's t distribution (2)
If x ~ Gaussian with μ = 0, σ2 = 1, and 
    z ~ χ2 with n degrees of freedom, then
    t = x / (z/n)1/2  follows Student's t with ν = n.

This arises in problems where one forms the ratio of a sample 
mean to the sample standard deviation of Gaussian r.v.s.

The Student's t provides a bell-shaped pdf with adjustable
tails, ranging from those of a Gaussian, which fall off very
quickly, (ν → ∞, but in fact already very Gauss-like for 
ν =  two dozen),  to the very long-tailed Cauchy (ν = 1). 

Developed in 1908 by William Gosset, who worked under
the pseudonym "Student" for the Guinness Brewery.
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Proof of Neyman-Pearson Lemma

G. Cowan / RHUL Physics

Consider a critical region W and suppose the LR 
satisfies the criterion of the Neyman-Pearson 
lemma:

 P(x|H1)/P(x|H0)  ≥  cα  for all x in W, 
 P(x|H1)/P(x|H0)  ≤  cα  for all x not in W. 

δW+

Try to change this into a different critical 
region W′ retaining the same size α, i.e.,

δW-

W′

W

To do so add a part δW+, but to keep the 
size α, we need to remove a part δW-, i.e., 



Terascale Statistics 2024 / Lecture 1 82

Proof of Neyman-Pearson Lemma (2)

G. Cowan / RHUL Physics

δW+But we are supposing the LR is higher for 
all x in δW- removed than for the x in 
δW+ added, and therefore

δW-

W′

The right-hand sides are equal and therefore 
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Proof of Neyman-Pearson Lemma (3)

G. Cowan / RHUL Physics

Note W and δW+ are disjoint, and 
W′ and δW-  are disjoint, so by 
Kolmogorov’s 3rd axiom,

We have

Therefore

δW+

δW-

W′
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Proof of Neyman-Pearson Lemma (4)

G. Cowan / RHUL Physics

And therefore 

i.e. the deformed critical region W′  cannot have higher power 
than the original one that satisfied the LR criterion of the 
Neyman-Pearson lemma.


