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Outline

→ Monday 15:30  Hypothesis testing

 Monday 16:30  Hypothesis testing tutorial

 Tuesday 10:30  Parameter estimation tutorial

 Tuesday 14:00  Setting limits

 Wednesday 9:00 Bayesian parameter estimation

 Wednesday 11:00 Errors on errors

Lectures/tutorials from me:

More resources in the University of London course:

  https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Hypothesis, likelihood

Suppose the entire result of an experiment (set of 
measurements) is a collection of numbers x.  

A (simple) hypothesis is a rule that assigns a probability to each 
possible data outcome:

Note:

 1)  For the likelihood we treat the data x as fixed.

 2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
more undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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Suppose a measurement produces data x; consider a hypothesis H0 
we want to test and alternative H1

 H0, H1 specify probability for x: P(x|H0), P(x|H1)

A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
α, assuming H0 is correct,  to observe the data there, i.e.,

  P(x ∈ w | H0) ≤ α

Need inequality if data are
discrete.

α is called the size or 
significance level of the test.

If x is observed in the 
critical region, reject H0.

Frequentist hypothesis tests 

data space Ω

critical region w
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Definition of a test (2)

But in general there are an infinite number of possible critical 
regions that give the same size .

Use the alternative hypothesis H1 to motivate where to place the 
critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:
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Classification viewed as a statistical test
Suppose events come in two possible types:  

      s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., H0 = b.

Carry out test on many events, each is either of type s or b, i.e., 
here the hypothesis is the “true class label”, which varies randomly 
from event to event, so we can assign to it a frequentist probability.

Select events for which where H0 is rejected as “candidate events of 
type s”.  Equivalent Particle Physics terminology:

background efficiency

signal efficiency



Terascale Statistics 2025 / Lecture 1 7

Particle Physics context for a hypothesis test

high p
T

muons
high p

T
 jets 

of hadrons

missing transverse energy

p p
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A simulated SUSY event (“signal”):
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Background events

This event from Standard 
Model ttbar production also
has high  p

T
 jets and muons,

and some missing transverse
energy.

→ can easily mimic a 

      signal event.

G. Cowan / RHUL Physics
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Classification of proton-proton collisions
Proton-proton collisions can be considered to come in two classes:

 signal (the kind of event we’re looking for, y = 1)
 background (the kind that mimics signal, y = 0)

For each collision (event), we measure a collection of features:

 x1 = energy of muon   x4 = missing transverse energy
 x2 = angle between jets  x5 = invariant mass of muon pair
 x3 = total jet energy   x6 = ...

The real events don’t come with true class labels, but computer-
simulated events do.  So we can have a set of simulated events 
that consist of a feature vector x and true class label y (0 for 
background, 1 for signal):

     (x, y)1, (x, y)2, ..., (x, y)N

The simulated events are called “training data”.
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Distributions of the features
If we consider only two 
features x = (x1, x2), we can 
display the results in a scatter 
plot (red:  y = 0, blue: y = 1).

The test’s critical region is  defined by a “decision boundary” – 
without knowing the event type, we can classify them by seeing 
where their measured features lie relative to the boundary.

For each real event test the 
hypothesis that it is background.

(Related to this:  test that a sample 
of events is all background.)

For real events, the dots are 
black (true type is not known).
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Decision function, test statistic

A surface in an n-dimensional 
space can be described by

scalar 
function

constant

Different values of the constant
tc result in a family of surfaces.

Problem is reduced to finding 
the best decision function or test 
statistic t (x).
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Distribution of t(x)

f (t|H1)f (t|H0)

W

By forming a test statistic t(x), the boundary of the critical region in 
the n-dimensional x-space is determined by a single single value tc.

tc
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Types of decision boundaries

So what is the optimal boundary for the critical region, i.e., what
is the optimal test statistic t(x)?

First find best t(x), later address issue of optimal size of test.

Remember x-space can have many dimensions.

“cuts” linear non-linear
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Test statistic based on likelihood ratio 
How can we choose a test’s critical region in an ‘optimal way’, in 
particular if the data space is multidimensional?

 Neyman-Pearson lemma states:

For a test of H0 of size α, to get the highest power with respect to the
alternative H1 we need for all x in the critical region W

inside W and  ≤ cα outside, where cα is a constant chosen to give a 
test of the desired size.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.

G. Cowan / RHUL Physics

”likelihood 
ratio (LR)”
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Neyman-Pearson doesn’t usually help

We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 

so for a given x we can’t evaluate the likelihood ratio

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data:

 generate x ~ f (x|s)     →     x1,..., xN

 generate x ~ f (x|b)     →     x1,..., xN

This gives samples of “training data” with events of known type.

Use these to construct a statistic that is as close as possible to the 
optimal likelihood ratio (→ Machine Learning).
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Approximate LR from histograms

Want t(x) = f (x|s)/ f(x|b) for x here

N (x|s) ≈ f (x|s)

N (x|b) ≈ f (x|b)

N
(x

|s
)

N
(x

|b
)

One possibility is to generate
MC data and construct
histograms for both
signal and background.

Use (normalized) histogram 
values to approximate LR:

x

x

Can work well for single 
variable.
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Approximate LR from 2D-histograms
Suppose problem has 2 variables.  Try using 2-D histograms:

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells.

But if we want M bins for each variable, then in n-dimensions we
have Mn cells; can’t generate enough training data to populate.

 → Histogram method usually not usable for n > 1 dimension.

signal back-
ground
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f (x|s), f (x|b).

Histogram method with M bins for n variables requires that
we estimate Mn parameters (the values of the pdfs in each cell),
so this is rarely practical.

A compromise solution is to assume a certain functional form
for the test statistic t (x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f (x|s) and 
f (x|b) (with something better than histograms) and use the 
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods    (Machine Learning)

Many new (and some old) methods:

 Fisher discriminant

 (Deep) Neural Networks

 Kernel density methods

 Support Vector Machines

 Decision trees

  Boosting

  Bagging 

More in the lectures by Tilman Plehn
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f (x|H) for a set of
observations x = (x1,...xn). 

We observe a single point in this space: xobs. 

How can we quantify the level of compatibility between the data 
and the predictions of H?

Decide what part of 
the data space represents 
equal or less compatibility  
with H than does the 
point xobs.  (Not unique!) 

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj



p-values
Express level of compatibility between data and hypothesis 
(sometimes ‘goodness-of-fit’) by giving the p-value for H:

= probability, under assumption of H, to observe data 
with equal or lesser compatibility with H relative to the 
data we got. 

= probability, under assumption of H, to observe data as      
discrepant with H as the data we got or more so.

Basic idea:  if there is only a very small probability to find data
with even worse (or equal) compatibility, then H is “disfavoured by 
the data”.

If the p-value is below a user-defined threshold α (e.g. 0.05) then H 
is rejected (equivalent to hypothesis test of size α as seen earlier).
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p-value of H is not P(H)

where π(H) is the prior probability for H.

The p-value of H is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H 
represents a repeatable observation). 

If we do define P(H), e.g., in Bayesian statistics as a degree of 
belief,  then we need to use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

 Events could be from signal process or from background – 
 we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about s, e.g.,

     test s = 0 (rejecting H0 ≈ “discovery of signal process”)

     test all non-zero s  (values not rejected =  confidence interval)

In both cases need to ask what is relevant alternative hypothesis.
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Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe nobs = 5.  

Should we claim evidence for a new discovery?  

    Give p-value for hypothesis s = 0, suppose relevant alt. is s > 0.
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Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

in ROOT:

p = 1 - TMath::Freq(Z)

Z = TMath::NormQuantile(1-p)

in python (scipy.stats):

p = 1 - norm.cdf(Z) = norm.sf(Z)

Z = norm.ppf(1-p)

Result Z is a “number of sigmas”.  Note this does not mean that 
the original data was Gaussian distributed.
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Poisson counting experiment: discovery significance

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended 
to cover, e.g., hidden 
systematics, plausibility signal 
model, compatibility of data with 
signal, “look-elsewhere effect” 
(~multiple testing), etc.

Equivalent significance for p = 1.7 × 10−4:  

Often claim discovery if Z > 5 (p < 2.9 × 10−7, i.e., a “5-sigma effect”)
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Extra slides
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Example of a test for classification

Suppose we can measure for 
each event a quantity x, where

with 0 ≤ x ≤ 1.

For each event in a mixture of signal (s) and background (b) test

 H0 : event is of type b

using a critical region W of the form:  W = { x : x ≤ xc }, where
xc is a constant that we choose to give a test with the desired size α.



G. Cowan / RHUL Physics Terascale Statistics 2025 / Lecture 1 29

Classification example (2)

Suppose we want α = 10−4.     Require:

and therefore 

For this test (i.e. this critical region W), the power with respect 
to the signal hypothesis (s) is

Note:  the optimal size and power is a separate question that will 
depend on goals of the subsequent analysis.
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Classification example (3)

Suppose that the prior probabilities for an event to be of  
type s or b are:

   πs = 0.001

   πb = 0.999

The “purity” of the selected signal sample (events where b 
hypothesis rejected) is found using Bayes’ theorem:
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Proof of Neyman-Pearson Lemma

G. Cowan / RHUL Physics

Consider a critical region W and suppose the LR 
satisfies the criterion of the Neyman-Pearson 
lemma:

 P(x|H1)/P(x|H0)  ≥  cα  for all x in W, 

 P(x|H1)/P(x|H0)  ≤  cα  for all x not in W. 

δW+

Try to change this into a different critical 
region W′ retaining the same size α, i.e.,

δW−

W′

W

To do so add a part δW+, but to keep the 
size α, we need to remove a part δW−, i.e., 



Terascale Statistics 2025 / Lecture 1 32

Proof of Neyman-Pearson Lemma (2)

G. Cowan / RHUL Physics

δW+But we are supposing the LR is higher for 
all x in δW− removed than for the x in 
δW+ added, and therefore

δW−

W′

The right-hand sides are equal and therefore 
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Proof of Neyman-Pearson Lemma (3)

G. Cowan / RHUL Physics

Note W and δW+ are disjoint, and 
W′ and δW− are disjoint, so by 
Kolmogorov’s 3rd axiom,

We have

Therefore

δW+

δW−

W′
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Proof of Neyman-Pearson Lemma (4)

G. Cowan / RHUL Physics

And therefore 

i.e. the deformed critical region W′  cannot have higher power 
than the original one that satisfied the LR criterion of the 
Neyman-Pearson lemma.
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Extending s/√b to case where b uncertain

The intuitive explanation of s/√b is that it compares the signal,
 s, to the standard deviation of n assuming no signal, √b.

Now suppose the value of b is uncertain, characterized by a 
standard deviation σb.

A reasonable guess is to replace √b by the quadratic sum of
√b and σb, i.e.,

This has been used to optimize some analyses e.g. where 
σb cannot be neglected.
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Profile likelihood with b uncertain

This is the well studied “on/off” problem:  Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...

Measure two Poisson distributed values:

 n ~ Poisson(s+b)         (primary or “search” measurement)

 m ~ Poisson(τb) (control measurement, τ known)

The likelihood function is

Use this to construct profile likelihood ratio (b is nuisance
parameter):
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Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

and in particular to test for discovery (s = 0), 
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Asymptotic significance

Use profile likelihood ratio for q0, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

Essentially same as in:



Or use the variance of b = m/τ,  
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Asimov approximation for median significance

To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

 n → s + b

 m → τb

,   to eliminate τ:ˆ
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Limiting cases

Expanding the Asimov formula in powers of s/b and
σb

2/b (= 1/τ) gives

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated 
with the Asimov data set.
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Testing the formulae:  s = 5
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Using sensitivity to optimize a cut
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