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Outline

Monday 15:30  Hypothesis testing

 Monday 16:30  Hypothesis testing tutorial

 Tuesday 10:30  Parameter estimation tutorial

 Tuesday 14:00  Setting limits

→ Wednesday 9:00 Bayesian parameter estimation

 Wednesday 11:00 Errors on errors
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Reminder of Bayesian approach

In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value θ.

        Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

        Our experiment has data x, → likelihood p(x|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf  p(θ|x) contains all our knowledge about θ.



4G. Cowan / RHUL Physics Terascale Statistics 2025 / Lecture 3

ML and Bayesian estimators

Purist Bayesian:  p(θ | x) contains all knowledge about θ.

Pragmatist Bayesian:  p(θ | x) could be a complicated function,

→ summarize using an estimator 

Take mode of p(θ | x),  (could also use e.g. expectation value)

What do we use for π(θ)?  
No golden rule (subjective!), 
often represent ‘prior ignorance’ 
by π(θ) = constant, in which case



5G. Cowan / RHUL Physics Terascale Statistics 2025 / Lecture 3

ML and Bayesian estimators (2)

Note () = const. cannot be normalized –  “improper prior”.

Can be allowed for some problems; prior always appears multiplied
by likelihood, so product L(θ)πθ(θ) can result in normalizable 
posterior probability.

But... we could have used a different parameter, e.g., λ= 1/,
and if prior () is constant, then πλ(λ) is not: 

‘Complete prior ignorance’ 
is not well defined.

Maybe we know say we nothing about λ, so take πλ(λ) = const.

Then
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Example:  fitting a straight line

Data:

Model: yi independent and all follow yi  ~ Gauss(μ(xi ), σi )

 

assume xi and σi known.

Goal:  estimate θ0 

Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)
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Maximum likelihood fit with Gaussian data

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)
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θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     

to find 
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Correlation between

             causes errors

to increase.

Standard deviations from

tangent lines to contour

ML (or LS) fit of θ0 and θ1
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The information on θ1

improves accuracy of

If we have a measurement t1 ~ Gauss (θ1, σt1
)
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Bayesian approach:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

We need to associate prior probabilities with θ0 and θ1, e.g.,

Likelihood for control
measurement t1

← ‘non-informative’, in any
case much broader than L(θ0)

Ur = “primordial”
         prior 

← suppose knowledge of θ0 has 
no influence on knowledge of θ1

prior after t1,
before y
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Bayesian example:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

Putting the ingredients into Bayes’ theorem gives:

posterior    ∝                  likelihood         ✕       prior

Note here the likelihood only reflects the measurements y.

The information from the control measurement t1 has been put 
into the prior for θ1.

We would get the same result using the likelihood P(y,t|θ0,θ1) and 
the constant  “Ur-prior” for θ1.

Here posterior only found as a proportionality.
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Marginalizing the posterior pdf

For this example, numbers come out same as in frequentist 
approach, but interpretation different.  

We then integrate (marginalize)  p(θ0, θ1 | y) to find p(θ0  | y):

In this example we can do the integral (rare).  We find

(same as for MLE)
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Marginalization with MCMC

Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

 cannot use for many applications, e.g., detector MC;
 effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional θ but look only at 
distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf p(θ) up to a proportionality 
constant, generate a sequence of points θ1 , θ2 , θ3 ,... 

1)  Start at some point 

2)  Generate  

Proposal density q(θ; θ0 )
e.g. Gaussian centred
about θ0

3)  Form test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

Still works if p(θ) is known only as a proportionality, which is 
usually what we have from Bayes’ theorem: p(θ|x) ∝ p(x|θ) π(θ).

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:  q(θ; θ0 ) = q(θ0; θ )

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher p(θ), take it;  

if not, only take the step with probability p(θ)/p(θ0).

If proposed step rejected, repeat the current point.
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Example:  posterior pdf from MCMC

Sample the posterior pdf from previous example with MCMC:

Normalized histogram of θ0 gives 
its marginal posterior pdf:
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
an “expert” says it should be positive and not too much  greater 
than 0.1 or so, i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.
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The exercise is described 

https://www.pp.rhul.ac.uk/~cowan/stat/exercises/bayesFit/

in the file bayes_fit_exercise.pdf.

The program is in bayesFit.py or bayesFit.ipynb.

This exercise treats the same fitting problem as seen with 
maximum likelihood, here using the Bayesian approach.

Bayes’ theorem is used to find the posterior pdf for the 
parameters, and these are summarized using the posterior mode 
(MAP estimators).

The posterior pdf is marginalized over the nuisance parameters 
using Markov Chain Monte Carlo.

Tutorial:  Bayesian parameter estimation
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Gaussian signal on exponential background

Same pdf as from mlFit.py (see tutorial 1) with n = 400 
independent values of x from 

At first take prior pdf constant for all parameters subject to 
0 ≤ θ ≤ 1, σ > 0, ξ > 0 (later try different priors).

Posterior pdf for parameters λ =  (θ, μ, σ, ξ) from Bayes theorem,

where 
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Data and MAP estimates

Maximize posterior with minuit (minimize – ln p(λ|x)).

Standard deviations from 
minuit correspond to 
approximating posterior as 
Gaussian near its peak.

Here priors constant so 
MAP estimates same as 
MLE, covariance matrix 
Vij = cov[θi, θj] also same.
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A look at bayesFit.py
Find maximum of posterior with iminuit (minimize – ln p(λ|x)), 

similar to maximum likelihood:

# Negative log-likelihood
def negLogL(par):
  fx = f(xData, par)
  return -np.sum(np.log(fx))

# Prior pdf
def prior(par):
  theta   = par[0]
  mu    = par[1]
  sigma   = par[2]
  xi    = par[3]
  pi_theta = 1. if theta >= 0. and theta <= 1. else 0.
  pi_mu   = 1. if mu >= 0. else 0.
  pi_sigma = 1. if sigma > 0. else 0.
  pi_xi   = 1. if xi > 0. else 0.
  piArr = np.array([pi_theta, pi_mu, pi_sigma, pi_xi])
  pi = np.product(piArr[np.array(parfix) == False])  # exclude fixed par
  return pi
 

# Negative log of posterior pdf
def negLogPost(par):
  return negLogL(par) - np.log(prior(par))

minimize with iminuit



23G. Cowan / RHUL Physics Terascale Statistics 2025 / Lecture 3

Metropolis-Hastings algorithm in bayesFit.py
# Iterate with Metropolis-Hastings algorithm
chain = [np.array(MAP)]     # start point is MAP estimate
numIterate = 10000
numBurn = 100
numAccept = 0
print("Start MCMC iterations: ", end="")
while len(chain) < numIterate:
  par = chain[-1]
  log_post = -negLogL(par) + np.log(prior(par))
  par_prop = np.random.multivariate_normal(par, cov_prop)
  if prior(par_prop) <= 0:
    chain.append(chain[-1])   # never accept if prob<=0.
  else:
    log_post_prop = -negLogL(par_prop) + np.log(prior(par_prop))
    alpha = np.exp(log_post_prop - log_post)
    u = np.random.uniform(0, 1)
    if u <= alpha:
      chain.append(par_prop)
      numAccept += 1
    else:
      chain.append(chain[-1])
    if len(chain)%(numIterate/100) == 0:
      print(".", end="", flush=True)
chain = np.array(chain)

Try increasing number 
of iterations (10k runs 
in about 20 s).
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Exercises on Bayesian parameter estimation (a)

1a)  Run bayesFit.py, look at the plots
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Exercises on Bayesian parameter estimation (b,c)

1b)  Investigate effect of data sample size, fixing parameters and 
length of MCMC chains.

1c)  Investigate changing the prior
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Exercises on Bayesian parameter estimation (d)

1d)  Include auxiliary measurement to constrain ξ

1e)  Investigate point and interval estimates for θ 



27G. Cowan / RHUL Physics Terascale Statistics 2025 / Lecture 3

MCMC trace plots
Take θ as parameter of interest, rest are nuisance parameters.

Marginalize by sampling posterior pdf with Metropolis-Hastings.

Gaussian proposal pdf, 
covariance U = sV, 

s = (2.38)2/Npar = 1.41,  
gives acceptance 
probability ~ 0.24.

Here 10 000 iterations 
(should use more).
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Marginal distributions

Note long tails.

Interpretation: data 
distribution can be 
approximated by  
Gaussian term only,  
(θ large, μ small) with 
large width (σ ~ 4-8) 
and a narrow 
exponential (ξ ~ 1-3).

MAP estimates shown with vertical bars
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Autocorrelation versus lag
MCMC samples are not independent, autocorrelation function 
= correlation coefficient of sample xi with xi+l as a function of 
the lag, l, where x = any of θ, μ, σ, ξ minus its mean:

Effective sample size

In stat. error estimates
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Ways to summarize the posterior

Point estimates:

 Posterior mode (MAP, coincides with MLE for constant prior).

 Posterior median (invariant under monotonic transformation 
of parameter).

 Posterior mean; coincides with above in large-sample limit.

Intervals:

 Highest Probability Density (HPD) interval, shortest for a 
given probability content, not invariant under param. trans.

 Central credible intervals, equal upper and lower tail areas, 
e.g., α/2 for CL = 1 – α.

 Point estimate +/- standard deviation, std. dev. from MCMC 
sample or by approximating core of posterior as Gaussian 
(from minuit); coincides with above in large-sample limit.
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Types of intervals

HPD = Highest Posterior Density

Equal tail (central) from posterior

Classical (frequentist)

G. Casella and R. Berger, Statistical Inference, 2002
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