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Outline

Monday 15:30  Hypothesis testing

 Monday 16:30  Hypothesis testing tutorial

 Tuesday 10:30  Parameter estimation tutorial

 Tuesday 14:00  Setting limits

 Wednesday 9:00 Bayesian parameter estimation

→ Wednesday 11:00 Errors on errors

Based on

G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778
G. Cowan, , EPJ Web of Conferences 258, 09002 (2022); arXiv:2107.02652
E. Canonero, A. Brazzale and G. Cowan, Eur. Phys. J. C (2023) 83:1100; arXiv:2304.10574
E. Canonero, G. Cowan, Eur. Phys. J. C (2025) 85: 156; arXiv:2407.05322
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https://xkcd.com/2110/ Randall Munroe, xkcd.com
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Least Squares for Averaging
= fit of horizontal line

Raymond T. Birge, 
Probable Values of the 
General Physical Constants 
(as of January 1, 1929), 
Physical Review 
Supplement, Vol 1, Number 
1, July 1929

Forerunner of the 
Particle Data Group

http://bancroft.berkeley.edu/Exhibits/physics/learning01.html
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Least squares: some issues
The method of least squares requires the standard deviations of 
the measured quantities, but often these are poorly known.

The uncertainty (e.g. confidence interval) of an LS average does 
not reflect goodness of fit:

  LS average of 9 ± 1 and 11 ± 1 is 10 ± 0.71

  LS average of 5 ± 1 and 15 ± 1 is 10 ± 0.71

LS estimators are equivalent to maximum-likelihood assuming 
Gaussian distributed measurements; but the tails of a Gaussian 
fall off very fast, not always an appropriate model.

  → Outliers in LS average  have very large influence.

Solution:  incorporate the uncertainty in the standard deviations 
of the measurements into the analysis.
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“Errors on Errors”

→  PDG “scale factor method” ≈ scale sys. errors with common 
factor until χ2

min = appropriate no. of degrees of freedom.
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Formulation of the problem
Suppose measurements y have probability (density) P(y|μ,θ), 

 μ = parameters of interest

 θ = nuisance parameters

To provide info on nuisance parameters, often treat their best 
estimates u as indep. Gaussian distributed r.v.s., giving likelihood

or log-likelihood (up to additive const.)
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Systematic errors and their uncertainty

Often the θi could represent a systematic bias and its best 
estimate ui in the real measurement is zero.

The σu,i are the corresponding “systematic errors”.

Sometimes σu,i is well known, e.g., it is itself a statistical error 
known from sample size of a control measurement.

Other times the ui are from an indirect measurement, Gaussian 
model approximate and/or the σu,i  are not exactly known.

Or sometimes σu,i is at best a guess that represents an 
uncertainty in the underlying model (“theoretical error”).

In any case we can allow that the σu,i are not known in general 
with perfect accuracy.
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Gamma model for variance estimates

Suppose we want to treat the systematic errors as uncertain,
so let the σu,i be adjustable nuisance parameters.

Suppose we have estimates si for σu,i  or equivalently vi = si
2, is an 

estimate of σu,i
2.

Model the vi as independent and gamma distributed:

Set α and β so that they give desired mean and width for f (v):

   E[v] = σu
2  =  α/β,

   r = 1/2√α ≈ relative “error on the error” = σs/E[s] .
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Distributions of v and s = √v

For α, β of  gamma distribution, 

relative “error on error”
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Motivation for gamma variance model

If one were to have n independent observations u1,..,un,  with all 
u ~ Gauss(θ, σu

2),  and we use the sample variance

to estimate σu
2, then (n−1)v/σu

2 follows a chi-square distribution
for n−1 degrees of freedom, which is a special case of the
gamma distribution (α = n/2, β = 1/2).  (In general one doesn’t
have a sample of ui values, but if this were to be how v was 
estimated, the gamma model would follow.)

Furthermore choice of the gamma distribution for v allows one
to profile over the nuisance parameters σu

2 in closed form and 
leads to a simple profile likelihood.
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Likelihood for gamma variance model

Treated like data:      y1,...,yL  (the primary measurements)
          u1,...,uN (estimates of nuisance par.)
          v1,...,vN (estimates of variances
                   of estimates of NP)

Adjustable parameters:    μ1,...,μM  (parameters of interest)
           θ1,...,θN (nuisance parameters)
           σu,1,...,σu,N (sys. errors = std. dev. of
            of NP estimates)

Fixed parameters:          r1,...,rN         (rel. err. in estimate of σu,i)

αi = 1/4ri
2

βi = αi/σui
2,
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Profiling over systematic errors

We can profile over the σu,i in closed form

which gives the profile log-likelihood (up to additive const.)

In limit of small ri and vi → σu,i
2, the log terms revert back to the 

quadratic form seen with known σu,i.
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Equivalent likelihood from Student’s t

We can arrive at same likelihood by defining

Since ui ~ Gauss and vi ~ Gamma, zi ~ Student’s t

with 

Resulting likelihood same as profile Lʹ(μ,θ) from gamma model 
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Curve fitting, averages

Suppose independent 
yi ~ Gauss, i = 1,...,N, with

μ are the parameters of interest in the fit function φ(x;μ), 

θ are bias parameters constrained by control measurements 
ui ~ Gauss(θi, σu,i), so that if σu,i are known we have

(known).
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Profiling over θi with known σu,i

Profiling over the bias parameters θi for known σu,i gives usual 
least-squares (BLUE) 

Widely used technique for curve fitting in Particle Physics.

Generally in real measurement, ui = 0.

Generalized to case of correlated yi and ui by summing 
statistical and systematic covariance matrices.
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Curve fitting with uncertain σu,i

Suppose now σu,i
2  are adjustable parameters with gamma 

distributed estimates vi.

Retaining the θi but profiling over σu,i
2 gives

Profiled values of θi from solution to cubic equations:



18G. Cowan / RHUL Physics Terascale Statistics 2025 / Errors on Errors

Goodness of fit
Can quantify goodness of fit with statistic

where Lʹ (φ,θ) has an adjustable φi for each yi (the saturated model).

Asymptotically should have q ~ chi-squared(N−M).

For increasing ri, asymptotic distribution no longer valid.  

Bartlett (1937) defines modified statistic:

By construction q′ has mean nd = N-M and turns out to have a 
distribution significantly closer to the asymptotic chi-square. 
(See Canonero et al., Eur. Phys. J. C (2023) 83:1100.)
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Distributions of q
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Distributions of Bartlett-corrected qʹ
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Example:  average of two measurements

Increased discrepancy
between values to be 
averaged gives larger
interval.

Interval length saturates
at ~level of absolute 
discrepancy between 
input values.

Approximate (”MINOS”) confidence interval based on

with

relative error 
on sys. error
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Sensitivity of average to outliers

Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take r = 0.01 for all).

inner error bars
= σy,i 

outer error bars 
= (σy,i

2 + σu,i
2)½ 
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Sensitivity of average to outliers (2)

Now suppose the measurement at 10 had come out at 20:

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r → 0).

“outlier”
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Average with all  r = 0.2

If we assign to each measurement r = 0.2, 

Estimate still at 10.00, size of interval moves 0.63 → 0.65



25G. Cowan / RHUL Physics Terascale Statistics 2025 / Errors on Errors

Average with all  r = 0.2 with outlier

Same now with the outlier (middle measurement 10 → 20)

Estimate →10.75 (outlier pulls much less).

Half-size of interval → 0.78 (inflated because of bad g.o.f.).
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Naive approach to errors on errors

Naively one might think that the error on the error in the previous
example could be taken into account conservatively by inflating 
the systematic errors, i.e., 

But this gives 

without outlier (middle meas. 10)

with outlier (middle meas. 20)

So the sensitivity to the outlier is not reduced and the size of the
confidence interval is still independent of goodness of fit.
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Discussion / Conclusions

Gamma model for variance estimates gives confidence intervals
that increase in size when the data are internally inconsistent,
and gives decreased sensitivity to outliers (known property of 
Student’s t based regression).

Equivalence with Student’s t model, ν = 1/2r2 degrees of freedom.

Simple profile likelihood – quadratic terms replaced by logarithmic:
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Discussion / Conclusions (2)
Asymptotics can break for increased error-on-error, may need 
Bartlett correction, higher-order asymptotics or MC.

Method assumes that meaningful ri values can be assigned and 
is valuable when systematic errors are not well known but 
enough “expert knowledge” is available to do so.

Alternatively, one could try to fit a global r to all systematic
errors, analogous to PDG scale factor method or meta-analysis
à la DerSimonian and Laird.  (→ current work).

Could also use e.g. as “stress test” – crank up the ri values until 
significance of result degrades and ask if you really trust the 
assigned systematic errors at that level.

Ongoing studies (with E. Canonero):  application to averages of 
top mass, W mass; general software framework.
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Software:  
https://www.pp.rhul.ac.uk/~cowan/stat/exercises/stave/stave.py

The program stave.py implements the Gamma Variance Model 
(GVM) described in Lecture 3 for averaging N measurements.

For details see G. Cowan, EPJC (2019) 79:133.

In this version the model does not distinguish between statistical 
and systematic errors.  

Confidence interval for the mean μ becomes sensitive to goodness-
of-fit (increases if data internally inconsistent).

Estimated mean less sensitive to outliers.

Tutorial:  Student’s t average
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Least Squares vs Gamma Variance Model

Quadratic terms from Least Squares replaced by logarithmic ones:

where

 yi = measured value

 vi = si
2 = estimated variance

  ri = relative uncertainty on estimate of variance 

Equivalent to replacing Gauss pdf for measurements by 
Student’s t, number of degrees of freedom = 1/2ri

2
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A quick look at stave.py

y = np.array([17., 19., 15., 3.])     # measured values
s = np.array([1.5, 1.5, 1.5, 1.5])     # estimates of std. dev
v = s**2                  # estimates of variances
r = np.array([0.2, 0.2, 0.2, 0.2])     # relative errors on errors

Set measured values, estimates of std. dev., errors on errors:

log-likelihood:

class NegLogL:

  def __init__(self, y, s, r):
    self.setData(y, s, r)
   
  def setData(self, y, s, r):
    self.data = y, s, r

  def __call__(self, mu):
    y, s, r = self.data
    v = s ** 2
    lnf = -0.5*(1. + 1./(2.*r**2))*np.log(1. + 2.*(r*(y-mu))**2/v)
    return -np.sum(lnf)
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Example average with GVM
Suppose four measurements of the parameter μ.

Each reports an estimated standard dev. of s = 1.5 and
a “relative error on the error” r = 0.2.

Suggested exercise:

Experiment with different 
numbers of measurements, 
different levels of internal 
consistency, different values 
for the std. dev. and error 
on error.

outlier
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Extra Slides
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Application to the muon g − 2 anomaly
The recently measured muon g − 2 (ave. of 2006, 2021) disagrees 
with the Standard Model prediction with a significance of 4.2σ.

Muon g-2 Collab., PRL 126, 141801 (2021) 

Discrepancy significantly
reduced by 2021 lattice-
based prediction of Borsanyi 
et al. (BMW).

Current goal is to investigate 
sensitivity of significance to 
error assumptions, so for 
now focus on the 4.2σ 
problem.

Here using 2021 meausrement; see also D. P. 
Aguillard et al. (The Muon g−2 Collaboration)
Phys. Rev. Lett. 131, 161802 (2023)
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Muon g − 2 ingredients

the ingredients of the 4.2σ effect are:

Using

0.37 (stat.) ± 0.17 (sys.)

0.40 (Had. Vac. Pol.) ± 0.18 (Had. Light-by-Light)

(ave. of BNL 2006 and FNAL 2021)

(SM pred. by Muon g −2 theory initiative)
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Suppose σSM uncertain

Suppose measurement errors well known, but that the SM theory 
error σSM  (estimated 0.43) could be uncertain.

This is the largest systematic and probably hardest to estimate.

Treat estimate vSM = (0.43)2 of variance σ2
SM as gamma distributed, 

width from relative uncertainty parameter rSM.

Maximum-likelihood for mean from minimum of
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p-value/significance of common-mean  hypothesis

Significance (goodness of fit) from 

Because of non-quadratic term in Q(μ), distribution of q departs 
from chi-square(1) for increasing rSM.

Best to get distribution of q from Monte Carlo (and speed up with 
Bartlett correction – see EPJC (2019) 79:133).

For rSM > 0 distribution of q depends on σ2
SM.  For MC use 

Maximum-Likelihood estimate (“profile construction”):

# of sigmas
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Significance of discrepancy versus rSM

Naive model:  use least squares but let σSM → (1 + rSM) σSM

Gamma variance model gives greater decrease in significance for 

rSM ≳ 0.2, e.g., 3.1σ for rSM = 0.3, 2.0σ for rSM = 0.6.
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Significance of discrepancy versus rSM

Establishing 4σ effect requires rSM ≲ 0.3 even if nominal exp. 
and SM uncertainties become half of present values.
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Discussion on muon g−2

Including uncertainties on estimates of uncertainties can have large 
effect on hypothesis test, esp. for high significance.

To establish e.g. a 5σ effect it is crucial to have both:

 small uncertainties

 accurate estimates of those uncertainties (~ 20% level)

This is ultimately because the tails of the Gaussian fall off so quickly.  

Gamma Variance Model ~ Student’s t likelihood with ν = 1/2r2  

degrees of freedom → longer tails than Gaussian.

Ongoing discussion with Bogdan Malaescu of Muon g-2 Theory 
Initiative on the HVP uncertainty, see, e.g.,

B. Malaescu et al., https://indico.him.uni-
mainz.de/event/11/contributions/80/attachments/50/51/amuWorkshop_Correlations_Malaescu.pdf

M. Davier et al., Eur. Phys. J. C 80 (2020) 241 , arXiv:1908.00921
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Developments of LS for Averaging
Much work in HEP and elsewhere on application/extension of
least squares to the problem of averaging or meta-analysis, e.g.,

A. C. Aitken, On Least Squares and Linear Combinations of 
Observations, Proc. Roy. Soc. Edinburgh 55 (1935) 42.

L. Lyons, D. Gibaut and P. Clifford, How to Combine Correlated 
Estimates of a Single Physical Quantity,  Nucl. Instr. Meth. A270 
(1988) 110.

A. Valassi, Combining Correlated Measurements of Several 
Different Physical Quantities, Nucl. Instr. Meth. A500 (2003) 391.

R. Nisius, On the combination of correlated estimates of a physics 
observable,  Eur. Phys.  J.  C 74 (2014) 3004.

R. DerSimonian and N. Laird, Meta-analysis in clinical trials, 
Controlled Clinical Trials 7 (1986) 177-188.
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Errors on theory errors, e.g., in QCD

Uncertainties related to theoretical
predictions are notoriously difficult
to quantify, e.g., in QCD may come
from variation of renormalization
scale in some “appropriate range”.

Problematic e.g. for αs →

If, e.g., some (theory) errors are
underestimated, one may obtain poor
goodness of fit, but size of confidence 
interval from usual recipe will not 
reflect this.

An outlier with an underestimated 
error bar can have an inordinately 
strong influence on the average.

M. Tanabashi et al. (Particle Data Group), 
Phys. Rev. D 98, 030001 (2018)
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Correlated uncertainties

The phrase “correlated uncertainties” usually means that a single
nuisance parameter affects the distribution (e.g., the mean) of more 
than one measurement.   

For example, consider measurements y, parameters of interest μ,
nuisance parameters θ with 

That is, the θi are defined here as contributing to a bias and
the (known) factors Rij determine how much θj affects yi.

As before suppose one has independent control measurements 
ui~ Gauss(θi, σui).
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Correlated uncertainties  (2)

The total bias of yi can be defined as 

which can be estimated with

These estimators are correlated having covariance

In this sense the present method treats “correlated uncertainties”,
i.e., the control measurements ui are independent, but nuisance
parameters affect multiple measurements, and thus bias estimates
are correlated.
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Single-measurement model

As a simplest example consider

y ~ Gauss(μ, σ2), 

v ~ Gamma(α, β),

Test values of μ with tμ = -2 ln λ(μ) with 
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Distribution of tμ
From Wilks’ theorem, in the asymptotic limit we should
find tμ ~ chi-squared(1).

Here “asymptotic limit” means all estimators ~Gauss, which
means r → 0.  For increasing r, clear deviations visible:
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Distribution of tμ  (2)

For larger r, breakdown of asymptotics gets worse:

Values of r ~ several tenths are relevant so we cannot in general
rely on asymptotics to get confidence intervals, p-values, etc.
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Bartlett corrections

One can modify tμ defining

such that the new statistic’s distribution is better approximated 
by chi-squared for nd degrees of freedom (Bartlett, 1937).

For this example E[tμ] ≈ 1 + 3r2  +  2r4 works well:
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Bartlett corrections (2)

Good agreement for r ~ several tenths out to √tμʹ ~ several, i.e.,
good for significances of several sigma:
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68.3% CL confidence interval for μ
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Same with interval from pμ = α with 
nuisance parameters profiled at μ
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Coverage of intervals
Consider previous average of 
two numbers but now generate
for i = 1, 2 data values 

     yi ~ Gauss(μ, σy,i)

     ui ~ Gauss(0, σu,i)

     vi ~ Gamma(σu,i, ri)

     σy,i = σu,i = 1

and look at the probability 
that the interval covers the
true value of μ.

Coverage stays reasonable
to r ~ 0.5, even not bad
for Profile Construction
out to r ~ 1.
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