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https://xkcd.com/2110/ Randall Munroe, xkcd.com

T DON'T KNOW HOW To PROPAGATE
ERROR CORRECTLY, S0 I JUST PUT
ERROR BARS ON ALL MY ERROR BARS.
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http://bancroft.berkeley.edu/Exhibits/physics/learning01.html

Least Squares for Averaging
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Least squares: some issues

The method of least squares requires the standard deviations of
the measured quantities, but often these are poorly known.

The uncertainty (e.g. confidence interval) of an LS average does
not reflect goodness of fit:

LS average of 9 = 1and 11 = 1is10 = 0.71
LS average of 5 = 1and 15 *+ 1is10 = 0.71

LS estimators are equivalent to maximum-likelihood assuming
Gaussian distributed measurements; but the tails of a Gaussian
fall off very fast, not always an appropriate model.

— Qutliers in LS average have very large influence.

Solution: incorporate the uncertainty in the standard deviations
of the measurements into the analysis.
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“Errors on Errors”

APRIL 15, 1932 PHYSICAL REVIEW VOLUME 40

THE CALCULATION OF ERRORS BY THE
METHOD OF LEAST SQUARES

By RavymMonD T. BIRGE
UNIVERSITY OF (CALIFORNIA, BERKELEY

(Received February 18, 1932)

ABSTRACT

Present status of least squares’ calculations.—There are three possible stages
in any least squares’ calculation, involving respectively the evaluation of (1) the most
probable values of certain quantities from a set of experimental data, (2) the reliability
or probable error of each quantity so calculated, (3) the reliability or probable error
of the probable errors so calculated. Stages (2) and (3) are not adequately treated in
most texts, and are frequently omitted or misused, in actual work. The present article
is concerned mainly with these two stages.

— PDG “scale factor method” = scale sys. errors with common
factor until y%.i, = appropriate no. of degrees of freedom.
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Formulation of the problem

Suppose measurements Yy have probability (density) P(y|u,0),
u = parameters of interest
@ = nuisance parameters

To provide info on nuisance parameters, often treat their best
estimates U as indep. Gaussian distributed r.v.s., giving likelihood

L(Iu’: 9) = P(y. ulﬂ"g) — P(Y‘ﬂ’* 9)P(u|9)

E—(Hi—ﬁz‘}gﬁﬂﬁi

or log-likelihood (up to additive const.)

1Y (u; — 91‘)2
In L, 0) =n P(y|u.0) — 53"

i=1 Ui
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Systematic errors and their uncertainty
Often the 6, could represent a systematic bias and its best
estimate U; in the real measurement is zero.

The g, ; are the corresponding “systematic errors”.

Sometimes oy ; is well known, e.g., it is itself a statistical error
known from sample size of a control measurement.

Other times the u; are from an indirect measurement, Gaussian
model approximate and/or the g,; are not exactly known.

Or sometimes o, ; is at best a guess that represents an
uncertainty in the underlying model (“theoretical error”).

In any case we can allow that the o ; are not known in general
with perfect accuracy.
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Gamma model for variance estimates

Suppose we want to treat the systematic errors as uncertain,
so let the g, ; be adjustable nuisance parameters.

Suppose we have estimates S; for g,; or equivalently v; = s;%, is an
estimate of g, ;%.

Model the v; as independent and gamma distributed:

fag) e Lt T3
. ['(a) . '
e

Set o and f so that they give desired mean and width for f(v):
E[v] =0, = alp,

r = 1/2\a = relative “error on the error” = o JE[S] .
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Distributions of Vand s = Vv
1 1

For a, p of gamma distribution, a; = LB = ——
Ar2 7 T Ar2g2
L T Uy
. 1 oy, Loy, = 05
; — — — — o~ .
‘T 2FE[v] 202  Els] S relative “error on error”
T
= 5 = 10
=) —— r=005 3 —— =005
= - r=01 (a) = g e T=0.1 (b)
r=02 I | r=0.2
r=05 —— =05
r=1.0 6L r=1.0
4 L
2 K
L‘_“'_"?T_——_‘ UI ~ el .
2 25 0 05 2 25
v S
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Motivation for gamma variance model

If one were to have n independent observations uy,..,u,, with all
U ~ Gauss(6, 6,°), and we use the sample variance

1 T
’U:n_lz(ui—ﬁ)g

i=1

to estimate ¢,%, then (n—1)v/g,* follows a chi-square distribution
for n—1 degrees of freedom, which is a special case of the

gamma distribution (a« = n/2, f = 1/2). (In general one doesn’t
have a sample of u; values, but if this were to be how v was
estimated, the gamma model would follow.)

Furthermore choice of the gamma distribution for v allows one
to profile over the nuisance parameters ¢,%in closed form and
leads to a simple profile likelihood.
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Likelihood for gamma variance model
N
1

L(p,8,0%) = P(y|p0)
i:l_[“!Zm:rﬁi

—(ui—0;)% /203

e

%i = 1/4r?
X b U?*_lﬁ Pivi . .y I2
F('ﬂ'iz') pi = ailoy
Treated like data: Viseen YL (the primary measurements)
Ug,yeen, Uy (estimates of nuisance par.)
Vi, VN (estimates of variances

of estimates of NP)

Adjustable parameters: uy,..., .y  (parameters of interest)
04,...,0y  (nuisance parameters)
Oy 1:--0un (SYs. errors = std. dev. of
of NP estimates)

Fixed parameters: ri,...,I'n (rel. err. in estimate of g, ;)
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Profiling over systematic errors

We can profile over the g, in closed form

2'”-' — L 191 2 — JLI.I' L ¢ ¢
T4y, ar%gua.}{ (n,8,0%) o 2?"1.2

Uqg

which gives the profile log-likelihood (up to additive const.)

———
B

InL(p,0,0%,)

1 & 1
In P(y|p,8) — EZ (1 - 2?‘2) In !1 + 2

1

i=1

In limit of small r; and v; — ¢, ;%, the log terms revert back to the
quadratic form seen with known o,
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Equivalent likelihood from Student’s t

u; — 0;

We can arrive at same likelihood by defining z; = =
1

Since U; ~ Gauss and v; ~ Gamma, z; ~ Student’s t

Izt 2\ Y7 |
f(zi‘f"’i) — ( - ) 1+ il with Vi = —5
1,4’1’!1'?1'1_‘(1’,—-'3'/2) ; 2?‘1.

Resulting likelihood same as profile L'(#,0) from gamma model

F(L—'—I—l) 2:’2 —5';_—1
o fCE) (1. 9)
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Curve fitting, averages o
Suppose independent + }
y; ~ Gauss, 1 = 1,...,N, with > ¢
Elyl = ¢(zisp) +6;,
Vil = cri_ (known).

X

u are the parameters of interest in the fit function ¢(X;u),

@ are bias parameters constrained by control measurements
U; ~ Gauss(6;, g, ), so that if g, ; are known we have

N 2 2
yi —p(zisp) — 0 u; — 0;
—211111(}.1,.., 9) _ Z ( '(1'9( 52#) ) 1+ ( J2 )

i=1 Yi U4
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Profiling over 6; with known o, ;

Profiling over the bias parameters 6; for known o, ; gives usual
least-squares (BLUE)

n »ur)—Z; o = x*(1
= Yi U

Widely used technique for curve fitting in Particle Physics.
Generally in real measurement, u; = 0.

Generalized to case of correlated y;and U, by summing
statistical and systematic covariance matrices.
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Curve fitting with uncertain o ;

Suppose now o, ;* are adjustable parameters with gamma
distributed estimates v;.

Retaining the &, but profiling over au,iz gives

N ; ] PR— .
—2InL'(p.0) = Z !(yi — (i 1) — 6;)° N (1 N 2;) n (1 o2 (u; vrgz)z)]

2
=1 Jy-a' 7

Profiled values of 6, from solution to cubic equations:

v; + (1 +2r2)o? ] 9

0; 4+ [—2ui —yi + i 07 + 5 Y 4 2ui(yi — i) + u’

[

v \  (1+ 2?3)521_1;1- _
(%ya)(2rg+“3/ 272 . =0, i=1,...,N,

z
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Goodness of fit

Can quantify goodness of fit with statistic

o A
qz_mﬂf»(m?)

L'(¢.0)
N . . _0.)\2 . 0.)2
— min Z (yi '{P(mzéﬁ) 91) + 1+ 12 Inl1 —I_Q?'i? (uz 93)
.0 1 in 2?'1?1 U4

where L' (¢,0) has an adjustable ¢, for each y; (the saturated model).
Asymptotically should have g ~ chi-squared(N—M).

For increasing r;, asymptotic distribution no longer valid.

nq

Bartlett (1937) defines modified statistic: ¢ = mq

By construction ' has mean ny= N-M and turns out to have a
distribution significantly closer to the asymptotic chi-square.
(See Canonero et al., Eur. Phys. J. C(2023) 83:1100.)
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Distributions of

= 1 N=2
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1
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Distributions of Bartlett-corrected ¢’
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Example: average of two measurements

Approximate ("MINOS”) confidence interval based on

InL'(p) =InL'(3) = Qa/2  with  Qa=F4'(1—a;n)

= 12
E — 8=0 y,=10-8+1%1 Increased discrepancy
g1 gf; y,=10+5+1+1 between values to be
5 523 averaged gives larger
: S I interval.
o
S 6 oo Interval length saturates
- at ~level of absolute
£ 4y discrepancy between
input values.
2 -
0o 0.2 0.4 0.6 08 ! relative error

r — on Sys. error
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Sensitivity of average to outliers

Suppose we average 5 values, y =8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error

(here take r = 0.01 for all).

- 29
ﬁ =10.00 £ 0.63 * data
q =50 o~
0F H
p=029
r=20.01 (all)
15 +
inner error bars
} 1 = Oy
10 { T 1
{ t outer error bars
= (O-y,i2 T O-u,iz)l/2
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Sensitivity of average to outliers (2)

Now suppose the measurement at 10 had come out at 20:

> 29

20 r

15

10 |

i=1200+063
q'=449
p=41x10" {
r=0.01 (all

* data

el

— U

T~

T~

H—a—
H—a—H

“outlier”

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r — 0).

G. Cowan / RHUL Physics
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Average with all r=0.2

If we assign to each measurement r=0.2,

- 20
El =10.00 £ 0.65 * data
q’ = 49 o~
20f H
p=0.30
r=0.2 (all
15

H——

10 {

H—a—

Estimate still at 10.00, size of interval moves 0.63 - 0.65
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Average with all r = 0.2 with outlier

Same now with the outlier (middle measurement 10 — 20)

> 29

20 -

15 |

10

5]

i=10.75+0.78
g’ =305
p=39x10°
r=0.2 (all)

{

* data

L5

— U

Estimate —10.75 (outlier pulls much less).

Half-size of interval — 0.78 (inflated because of bad g.o.f.).

G. Cowan / RHUL Physics
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Naive approach to errors on errors

Naively one might think that the error on the error in the previous
example could be taken into account conservatively by inflating

the systematic errors, i.e.,
Oy, — Oy, (1 +1;)

But this gives

[t = 10.00 & 0.70 without outlier (middle meas. 10)

[t = 12.00%0.70 with outlier (middle meas. 20)

So the sensitivity to the outlier is not reduced and the size of the
confidence interval is still independent of goodness of fit.
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Discussion / Conclusions

Gamma model for variance estimates gives confidence intervals
that increase in size when the data are internally inconsistent,
and gives decreased sensitivity to outliers (known property of
Student’s t based regression).

Equivalence with Student’s t model, v = 1/2r? degrees of freedom.

Simple profile likelihood — quadratic terms replaced by logarithmic:
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Discussion / Conclusions (2)

Asymptotics can break for increased error-on-error, may need
Bartlett correction, higher-order asymptotics or MC.

Method assumes that meaningful r; values can be assigned and
is valuable when systematic errors are not well known but

enough “expert knowledge” is available to do so.

Alternatively, one could try to fit a global r to all systematic
errors, analogous to PDG scale factor method or meta-analysis
a la DerSimonian and Laird. (— current work).

Could also use e.g. as “stress test” — crank up the r; values until
significance of result degrades and ask if you really trust the
assigned systematic errors at that level.

Ongoing studies (with E. Canonero): application to averages of
top mass, W mass; general software framework.

G. Cowan / RHUL Physics Terascale Statistics 2025 / Errors on Errors
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P

Tutorial: Student’s t average

Software:
https://www.pp.rhul.ac.uk/~cowan/stat/exercises/stave/stave.py

The program stave.py implements the Gamma Variance Model
(GVM) described in Lecture 3 for averaging N measurements.

For details see G. Cowan, EPJC (2019) 79:133.

In this version the model does not distinguish between statistical
and systematic errors.

Confidence interval for the mean u becomes sensitive to goodness-
of-fit (increases if data internally inconsistent).

Estimated mean less sensitive to outliers.
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Least Squares vs Gamma Variance Model

Quadratic terms from Least Squares replaced by logarithmic ones:

2 2
A 1 P —
vi= ; (1+ 2)111[1”?3(@; u)]
; 27‘?; V;

o*

where
Y; = measured value
V; = §;% = estimated variance

I, = relative uncertainty on estimate of variance

Equivalent to replacing Gauss pdf for measurements by
Student’s t, number of degrees of freedom = 1/2r?
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A quick look at stave.py

Set measured values, estimates of std. dev., errors on errors:

y =np.array([17., 19., 15., 3.]) # measured values
s =np.array([1.5, 1.5, 1.5, 1.5]) # estimates of std. dev

v =5%*2 # estimates of variances
r =np.array([0.2, 0.2, 0.2, 0.2]) # relative errors on errors

log-likelihood:

class NeglLoglL:

def _init_ (self,y, s, r):
self.setDatal(y, s, r)

def setData(self, y, s, r):
self.data=vy,s,r

def _call__(self, mu):
y, s, r = self.data
v=s**2
Inf =-0.5%(1. + 1./(2.%r**2))*np.log(1. + 2.*%(r*(y-mu))**2/v)
return -np.sum(Inf)

G. Cowan / RHUL Physics Terascale Statistics 2025 / Errors on Errors



Example average with GVM

Suppose four measurements of the parameter L.

Each reports an estimated standard dev. of s = 1.5 and
a “relative error on the error” r = 0.2.

25 -
20 -
* + Suggested exercise:
| ' . . .
15 + Experiment with different
> numbers of measurements,
10 - different levels of internal
outlier consistency, different values
51 e measured data / for the std. dev. and error
0

1 2 3 4
measurement number
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Application to the muon g — 2 anomaly

The recently measured muon g — 2 (ave. of 2006, 2021) disagrees
with the Standard Model prediction with a significance of 4.20.

Muon g-2 Collab., PRL 126, 141801 (2021)

Discrepancy significantly

BNLg-2 — ® = reduced by 2021 lattice-
based prediction of Borsanyi
FNAL g-2 + o : et al. (BMW).

Current goal is to investigate

< 4.20 > . .
sensitivity of significance to

error assumptions, so for

@ l @
now focus on the 4.20
Standard Model Experiment
Average P roblem.

175 180 185 190 195 200 205 210 215

9
ay ™ 10 =1165900 Here using 2021 meausrement; see also D. P.
Aguillard et al. (The Muon g-2 Collaboration)

Phys. Rev. Lett. 131, 161802 (2023)
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Muon g — 2 ingredients
Using a, = (9—2)/2 y = a, x 107 — 1165900

the ingredients of the 4.20 effect are:

Yexp = 20.61 £ 0.41 (ave. of BNL 2006 and FNAL 2021)
X
N 037 (stat.) &= 0.17 (sys.)

B. Abi et al. (Muon g—2 Collaboration), Measurement of the Positive Muon Anomalous
Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).

G. W. Bennett et al. (Muon g — 2 Collaboration), Final report of the E821 muon
anomalous magnetic moment measurement at BNL, Phys. Rev. D 73, 072003 (2006).

ysm = 18.10 :20.43 | (SM pred. by Muon g—2 theory initiative)

X,

N
0.40 (Had. Vac. Pol.) = 0.18 (Had. Light-by-Light)

T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, and T. Blum et al., The anomalous
magnetic moment of the muon in the standard model, Phys. Rep. 887, 1 (2020).
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Suppose og),, uncertain

Suppose measurement errors well known, but that the SM theory
error o, (estimated 0.43) could be uncertain.

This is the largest systematic and probably hardest to estimate.

Treat estimate Vg, = (0.43)? of variance %\, as gamma distributed,
width from relative uncertainty parameter rgqy.

Maximume-likelihood for mean from minimum of

L(p)
Q) =—2In 7=

— )2 1
_ (Yep — 1) +(1+22 )111

2
Texp S

(ysm — p)?
vSM

1 -+ 2T§M

G. Cowan / RHUL Physics Terascale Statistics 2025 / Errors on Errors
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p-value/significance of common-mean hypothesis

Significance (goodness of fit) from ¢ = Q(j1).
Because of non-quadratic term in Q(u), distribution of q departs
from chi-square(1) for increasing rqy.

Best to get distribution of q from Monte Carlo (and speed up with
Bartlett correction — see EPJC (2019) 79:133).

For rgy, > O distribution of g depends on ¢%gy,. For MC use
Maximum-Likelihood estimate (“profile construction”):

Py, — UM T 2rgu(ysm — A)°
> 1+ 2r¢,,
MC — f(q) — p =f f(q)dq — significance Z = ® (1 — p/2)
q,obs \

# of sigmas
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Significance of discrepancy versus g

5

(o)

w
1

N
1

significance

=
1

—— Gamma variance model
- == Naive model

0 . . . . .
0.0 0.1 0.2 0.3 0.4 0.5 0.6

I'sm

Naive model: use least squares but let ogyy — (1 + I'gy1) o5

Gamma variance model gives greater decrease in significance for
rev = 0.2, e.9., 3.10 for rq, = 0.3, 2.00 for rgy, = 0.6.
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Significance of discrepancy versus sy,

10
— 2021 values
8 -—=-= Exp. unc. halved
Exp. and SM unc. halved

5
v 67
O
c
©
=
Y
c
o
92]

0

00 01 02 03 04 05 0.6
Ism

Establishing 40 effect requires rgy, < 0.3 even if nominal exp.
and SM uncertainties become half of present values.
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Discussion on muon g—2

Including uncertainties on estimates of uncertainties can have large
effect on hypothesis test, esp. for high significance.
To establish e.g. a 5o effect it is crucial to have both:

small uncertainties

accurate estimates of those uncertainties (~ 20% level)
This is ultimately because the tails of the Gaussian fall off so quickly.

Gamma Variance Model ~ Student’s t likelihood with v = 1/2r?
degrees of freedom — longer tails than Gaussian.

Ongoing discussion with Bogdan Malaescu of Muon g-2 Theory
Initiative on the HVP uncertainty, see, e.g.,

B. Malaescu et al., https://indico.him.uni-
mainz.de/event/11/contributions/80/attachments/50/51/amuWorkshop_Correlations_Malaescu.pdf

M. Davier et al., Eur. Phys. J. C80(2020) 241, arXiv:1908.00921
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Developments of LS for Averaging

Much work in HEP and elsewhere on application/extension of
least squares to the problem of averaging or meta-analysis, e.g.,

A. C. Aitken, On Least Squares and Linear Combinations of
Observations, Proc. Roy. Soc. Edinburgh 55 (1935) 42.

L. Lyons, D. Gibaut and P. Clifford, How to Combine Correlated
Estimates of a Single Physical Quantity, Nucl. Instr. Meth. A270
(1988) 110.

A. Valassi, Combining Correlated Measurements of Several
Different Physical Quantities, Nucl. Instr. Meth. A500 (2003) 391.

R. Nisius, On the combination of correlated estimates of a physics
observable, Eur. Phys. J. C74 (2014) 3004.

R. DerSimonian and N. Laird, Meta-analysis in clinical trials,
Controlled Clinical Trials 7 (1986) 177-188.
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Errors on theory errors, e.g., in QCD

M. Tanabashi et al. (Particle Data Group),

Uncertainties related to theoretical Phys. Rev. D 98, 030001 (2018)
predictions are notoriously difficult Baikov T .
. . Davier e o
to quantify, e.g., in QCD may come IR | o é
. . . . SM review Py
from variation of renormalization -. = '4,‘.= |
: “ : ” el
scale in some “appropriate range”. il | =
. PACS-CS (sF scheme EH_' =
Problematic e.g. for a — ?ﬁiﬁ“&”ﬁmﬁﬂ P
If, e.g., some (theory) errors are e H_'Ilil | | S 2
underestimated, one may obtain poor il - 3 =
goodness of fit, but size of confidence g g
interval from usual recipe will not e I
. Jil= ®
reflect this. Abierm Hed I 5
hoonobe—t I L
An outlier with an underestimated € - r——
GFittl?l’ . I_-_T—I precision fits
error bar can have an inordinately s | | e
strong influence on the average. 011 0115 012 0125 013
April 2016 C"s(Mg)
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Correlated uncertainties

The phrase “correlated uncertainties” usually means that a single
nuisance parameter affects the distribution (e.g., the mean) of more
than one measurement.

For example, consider measurements Yy, parameters of interest u,
nuisance parameters 6 with

N
Elyi] = ¢i(11,0) ~ @i(p) + » _ Rijb;

7=1

That is, the 6; are defined here as contributing to a bias and
the (known) factors R;; determine how much 6; affects y;.

As before suppose one has independent control measurements
Ui~ GaUSS(ei, O-Ui)'
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Correlated uncertainties (2)

N
The total bias of y;can be definedas b, =) ~ R;;6;

=

which can be estimated with b, = Z R;;u,

These estimators are correlated having covariance

N
Uij = covlbi, bj] = Y RixRjiV [ux]
k=1

In this sense the present method treats “correlated uncertainties”,
i.e., the control measurements U; are independent, but nuisance
parameters affect multiple measurements, and thus bias estimates
are correlated.
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Single-measurement model

As a simplest example consider

y ~ Gauss(u, 0°),

6 _ 1 5=
vV~ Gammala, p), a = 3, P = 132
1 2/9.2 [3
2y _ 1 2y _ E—(y—,r..',] [20% | a—1 —pBv

L(p,0%) = f(y,v|p,o%) \/mf P(ﬂ)i‘ €

3
Test values of p witht, =-2In A(x) with  A(p) = L. Jf(f))

L(j1,0?)
1 o (y — )’
t”:(l—i_ﬁ)lﬂ 1—|—2T y
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Distribution of t,

From Wilks’ theorem, in the asymptotic limit we should
find t, ~ chi-squared(1).

Here “asymptotic limit” means all estimators ~Gauss, which
means I — 0. For increasing I, clear deviations visible:

=
= 1

Pmr'
1072
107®
104

107°

IIII|T|I| IIIIII|'| IIIII|T| T III|T|T| IIIII|T|| TT

1D—Ellllllllll""""
0 5 10 15 20 25
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Distribution of t, (2)

For larger r, breakdown of asymptotics gets worse:

IIIII|T' IIIII|T' T IIII|T|| IIIII|T|| IIIII|T‘ T

Values of r ~ several tenths are relevant so we cannot in general
rely on asymptotics to get confidence intervals, p-values, etc.
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Bartlett corrections

. . ng
One can modify t defining ¢ = /

such that the new statistic’s distribution is better approximated
by chi-squared for n,y degrees of freedom (Bartlett, 1937).

For this example E[t,] ~ 1 +3r> + 2r* works well:
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Bartlett corrections (2)

Good agreement for  ~ several tenths out to \/tﬂ’ ~ several, i.e.,
good for significances of several sigma:

I - 107
1D*;— 1072
m‘S;— 1r.:r3i
m“-;— 10—‘:
1[}-5,;- 1(]'52
1[1"5:' Py 10°
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68.3% CL confidence interval for u

5 1
5 2
S — exact =
Z g
< 4 ----- asymptotic E 08
[1+]
o
_E) ------- Bartlett corrected & .
E o | T
=
@
8 04 +
— exact
02 -—--— asymptotic
--- Bartlett corrected
0o 02 04 06 08 1 05 05 04 06 08
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Same with interval from p, = a with
nuisance parameters profiled at u

-y
Ma

y,=10-8+1+1

—
=
T

y2:1ﬂ+6i1i1

S o9 1 o1 O o

1
N & W M = O

half-length of 1-o confidence interval

............................................
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Coverage of intervals

Consider previous average of
two numbers but now generate

for1 =1, 2 data values 1
yi ~ Gauss(u, o) =
U; ~ Gauss(0, o) 0.8 |

Vi ~ Gamma(O'u,i, I‘i)

O-y,i = Oy, =1
and look at the probability
that the interval coversthe 04 ... Nominal oL

true value of H. —— Minos interval

Coverage stays reasonable  %2[ ... Profile construction

tor ~ 0.5, even not bad

for Profile Construction %o 0.2 0.4 0.6 0.8 1
outtor ~ 1. r
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