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Outline

→ Wednesday 9:00  Quick review of probability

       Hypothesis testing

 Wednesday 9:45  p-values

       Confidence intervals / limits

More resources in the University of London course:

  https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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A quick review of probability

Frequentist (A = outcome of
repeatable observation)

Subjective (A = hypothesis)

Conditional probability:

A and B are independent iff:

I.e. if A, B independent, then

E.g. rolling a die, 
outcome n = 1,2,...,6:
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Bayes’ theorem

Use definition of conditional probability and

→ (Bayes’ theorem)

If set of all outcomes S = ∪i Ai 

with Ai disjoint, then law of total 
probability for P(B) says

so that Bayes’ theorem becomes

Bayes’ theorem holds regardless of how probability is 
interpreted (frequency, degree of belief...).

B ∩ Ai

Ai

B

S



5G. Cowan / RHUL Physics Introduction to the Terascale / Statistics Lecture 1

Hypothesis, likelihood

Suppose the entire result of an experiment (set of 
measurements) is a collection of numbers x.  

A (simple) hypothesis is a rule that assigns a probability to each 
possible data outcome:

Note:

 1)  For the likelihood we treat the data x as fixed.

 2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
more undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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Suppose a measurement produces data x; consider a hypothesis H0 
we want to test and alternative H1

 H0, H1 specify probability for x: P(x|H0), P(x|H1)

A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
α, assuming H0 is correct,  to observe the data there, i.e.,

  P(x ∈ w | H0) ≤ α

Need inequality if data are
discrete.

α is called the size or 
significance level of the test.

If x is observed in the 
critical region, reject H0.

Frequentist hypothesis tests 

data space Ω

critical region w
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Definition of a test (2)

But in general there are an infinite number of possible critical 
regions that give the same size .

Use the alternative hypothesis H1 to motivate where to place the 
critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:
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Classification viewed as a statistical test
Suppose events come in two possible types:  

      s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., H0 = b.

Carry out test on many events, each is either of type s or b, i.e., 
here the hypothesis is the “true class label”, which varies randomly 
from event to event, so we can assign to it a frequentist probability.

Select events for which where H0 is rejected as “candidate events of 
type s”.  Equivalent Particle Physics terminology:

background efficiency

signal efficiency
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Example of a test for classification

Suppose we can measure for 
each event a quantity x, where

with 0 ≤ x ≤ 1.

For each event in a mixture of signal (s) and background (b) test

 H0 : event is of type b

using a critical region W of the form:  W = { x : x ≤ xc }, where
xc is a constant that we choose to give a test with the desired size α.
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Classification example (2)

Suppose we want α = 10−4.     Require:

and therefore 

For this test (i.e. this critical region W), the power with respect 
to the signal hypothesis (s) is

Note:  the optimal size and power is a separate question that will 
depend on goals of the subsequent analysis.
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Classification example (3)

Suppose that the prior probabilities for an event to be of  
type s or b are:

   πs = 0.001

   πb = 0.999

The “purity” of the selected signal sample (events where b 
hypothesis rejected) is found using Bayes’ theorem:
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Particle Physics context for a hypothesis test

high p
T

muons
high p

T
 jets 

of hadrons

missing transverse energy

p p

G. Cowan / RHUL Physics

A simulated SUSY event (“signal”):
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Background events

This event from Standard 
Model ttbar production also
has high  p

T
 jets and muons,

and some missing transverse
energy.

→ can easily mimic a 

      signal event.

G. Cowan / RHUL Physics
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Classification of proton-proton collisions
Proton-proton collisions can be considered to come in two classes:

 signal (the kind of event we’re looking for, y = 1)
 background (the kind that mimics signal, y = 0)

For each collision (event), we measure a collection of features:

 x1 = energy of muon   x4 = missing transverse energy
 x2 = angle between jets  x5 = invariant mass of muon pair
 x3 = total jet energy   x6 = ...

The real events don’t come with true class labels, but computer-
simulated events do.  So we can have a set of simulated events 
that consist of a feature vector x and true class label y (0 for 
background, 1 for signal):

     (x, y)1, (x, y)2, ..., (x, y)N

The simulated events are called “training data”.
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Distributions of the features
If we consider only two 
features x = (x1, x2), we can 
display the results in a scatter 
plot (red:  y = 0, blue: y = 1).

The test’s critical region is  defined by a “decision boundary” – 
without knowing the event type, we can classify them by seeing 
where their measured features lie relative to the boundary.

For each real event test the 
hypothesis that it is background.

(Related to this:  test that a sample 
of events is all background.)

For real events, the dots are 
black (true type is not known).
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Decision function, test statistic

A surface in an n-dimensional 
space can be described by

scalar 
function

constant

Different values of the constant
tc result in a family of surfaces.

Problem is reduced to finding 
the best decision function or test 
statistic t (x).
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Distribution of t(x)

f (t|H1)f (t|H0)

W

By forming a test statistic t(x), the boundary of the critical region in 
the n-dimensional x-space is determined by a single single value tc.

tc
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Types of decision boundaries

So what is the optimal boundary for the critical region, i.e., what
is the optimal test statistic t(x)?

First find best t(x), later address issue of optimal size of test.

Remember x-space can have many dimensions.

“cuts” linear non-linear
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Test statistic based on likelihood ratio 
How can we choose a test’s critical region in an ‘optimal way’, in 
particular if the data space is multidimensional?

 Neyman-Pearson lemma states:

For a test of H0 of size α, to get the highest power with respect to the
alternative H1 we need for all x in the critical region W

inside W and  ≤ cα outside, where cα is a constant chosen to give a 
test of the desired size.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.

G. Cowan / RHUL Physics

”likelihood 
ratio (LR)”
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Neyman-Pearson doesn’t usually help

We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 

so for a given x we can’t evaluate the likelihood ratio

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data:

 generate x ~ f (x|s)     →     x1,..., xN

 generate x ~ f (x|b)     →     x1,..., xN

This gives samples of “training data” with events of known type.

Use these to construct a statistic that is as close as possible to the 
optimal likelihood ratio (→ Machine Learning).
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Approximate LR from histograms

Want t(x) = f (x|s)/ f(x|b) for x here

N (x|s) ≈ f (x|s)

N (x|b) ≈ f (x|b)

N
(x

|s
)

N
(x

|b
)

One possibility is to generate
MC data and construct
histograms for both
signal and background.

Use (normalized) histogram 
values to approximate LR:

x

x

Can work well for single 
variable.
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Approximate LR from 2D-histograms
Suppose problem has 2 variables.  Try using 2-D histograms:

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells.

But if we want M bins for each variable, then in n-dimensions we
have Mn cells; can’t generate enough training data to populate.

 → Histogram method usually not usable for n > 1 dimension.

signal back-
ground
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f (x|s), f (x|b).

Histogram method with M bins for n variables requires that
we estimate Mn parameters (the values of the pdfs in each cell),
so this is rarely practical.

A compromise solution is to assume a certain functional form
for the test statistic t (x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f (x|s) and 
f (x|b) (with something better than histograms) and use the 
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods    (Machine Learning)

Many new (and some old) methods:

 Fisher discriminant

 (Deep) Neural Networks

 Kernel density methods

 Support Vector Machines

 Decision trees

  Boosting

  Bagging 
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Extra slides
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Proof of Neyman-Pearson Lemma

G. Cowan / RHUL Physics

Consider a critical region W and suppose the LR 
satisfies the criterion of the Neyman-Pearson 
lemma:

 P(x|H1)/P(x|H0)  ≥  cα  for all x in W, 

 P(x|H1)/P(x|H0)  ≤  cα  for all x not in W. 

δW+

Try to change this into a different critical 
region W′ retaining the same size α, i.e.,

δW−

W′

W

To do so add a part δW+, but to keep the 
size α, we need to remove a part δW−, i.e., 
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Proof of Neyman-Pearson Lemma (2)

G. Cowan / RHUL Physics

δW+But we are supposing the LR is higher for 
all x in δW− removed than for the x in 
δW+ added, and therefore

δW−

W′

The right-hand sides are equal and therefore 
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Proof of Neyman-Pearson Lemma (3)

G. Cowan / RHUL Physics

Note W and δW+ are disjoint, and 
W′ and δW− are disjoint, so by 
Kolmogorov’s 3rd axiom,

We have

Therefore

δW+

δW−

W′
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Proof of Neyman-Pearson Lemma (4)

G. Cowan / RHUL Physics

And therefore 

i.e. the deformed critical region W′  cannot have higher power 
than the original one that satisfied the LR criterion of the 
Neyman-Pearson lemma.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Definition of a test (2)
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Particle Physics context for a hypothesis test
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Test statistic based on likelihood ratio 
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Multivariate methods    (Machine Learning)
	Slide 25
	Slide 26: Proof of Neyman-Pearson Lemma
	Slide 27: Proof of Neyman-Pearson Lemma (2)
	Slide 28: Proof of Neyman-Pearson Lemma (3)
	Slide 29: Proof of Neyman-Pearson Lemma (4)

