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Outline 
Day 1:  Introduction and parameter estimation 

 Probability, random variables, pdfs 
 Parameter estimation 
  maximum likelihood 
  least squares 
  Bayesian parameter estimation 
 Introduction to unfolding 

Day 2:  Discovery and Limits 
 Comments on multivariate methods (brief) 
 p-values 
 Testing the background-only hypothesis:  discovery 
 Testing signal hypotheses:  setting limits 
 Experimental sensitivity   
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Some statistics books, papers, etc.  
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989 
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.   
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 
S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 (with program library on CD) 
K.A. Olive et al. (Particle Data Group), Review of Particle Physics, 
Chin. Phys. C, 38, 090001 (2014).; see also pdg.lbl.gov sections 
on probability, statistics, Monte Carlo 
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Data analysis in particle physics  
Observe events (e.g., pp collisions) and for each, measure 
a set of characteristics: 

 particle momenta, number of muons, energy of jets,... 

Compare observed distributions of these characteristics to  
predictions of theory.  From this, we want to: 

   Estimate the free parameters of the theory: 

   Quantify the uncertainty in the estimates: 

   Assess how well a given theory stands in agreement  
   with the observed data: 

 
To do this we need a clear definition of PROBABILITY 
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A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional  
probability of A given B: 

Subsets A, B independent if: 

If A, B independent, 
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Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
but subjective probability can provide more natural treatment of  
non-repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 
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Bayes’ theorem 
From the definition of conditional probability we have, 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702−1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 
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The law of total probability 

Consider a subset B of  
the sample space S, 

B ∩ Ai 

Ai 

B 

S 

divided into disjoint subsets Ai 
such that ∪i Ai = S, 

→ 

→ 

→ law of total probability 

Bayes’ theorem becomes 
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An example using Bayes’ theorem 
Suppose the probability (for anyone) to have a disease D is: 

← prior probabilities, i.e., 
     before any test carried out 

Consider a test for the disease:  result is + or -

← probabilities to (in)correctly 
     identify a person with the disease 

← probabilities to (in)correctly 
     identify a healthy person 

Suppose your result is +.  How worried should you be?
G. Cowan  
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Bayes’ theorem example (cont.) 
The probability to have the disease given a + result is 

i.e. you’re probably OK! 

Your viewpoint:  my degree of belief that I have the disease is 3.2%. 

Your doctor’s viewpoint:  3.2% of people like this have the disease.

← posterior probability 

G. Cowan  
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations (shorthand:     ). 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

A hypothesis is is preferred if the data are found in a region of 
high predicted probability (i.e., where an alternative hypothesis 
predicts lower probability). 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, use subjective probability for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayes’ theorem has an “if-then” character:  If your prior 
probabilities were π(H), then it says how these probabilities 
should change in the light of the data. 

 No general prescription for priors (subjective!) 
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Random variables and probability density functions 
A random variable is a numerical characteristic assigned to an 
element of the sample space; can be discrete or continuous. 

Suppose outcome of experiment is continuous value x  

→ f (x) = probability density function (pdf) 

Or for discrete outcome xi with e.g. i = 1, 2, ... we have 

x must be somewhere 

probability mass function 

x must take on one of its possible values 

G. Cowan  
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Other types of probability densities 
Outcome of experiment characterized by several values, 
e.g. an n-component vector, (x1, ... xn)  

Sometimes we want only pdf of some (or one) of the components 

→  marginal pdf  

→  joint pdf  

Sometimes we want to consider some components as constant 

→  conditional pdf  

x1, x2 independent if  

G. Cowan  
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Expectation values 
Consider continuous r.v. x with pdf  f (x).   

Define expectation (mean) value as 

Notation (often):                         ~ “centre of gravity” of pdf.  

For a function y(x) with pdf g(y),  

(equivalent) 

Variance: 

Notation: 

Standard deviation: 

σ ~ width of pdf, same units as x. 

G. Cowan  
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Covariance and correlation 
Define covariance cov[x,y] (also use matrix notation Vxy) as   

Correlation coefficient (dimensionless) defined as 

If x, y, independent, i.e.,  ,   then 

→ x and  y, ‘uncorrelated’ 

N.B. converse not always true. 

G. Cowan  
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Correlation (cont.)  

G. Cowan  
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Parameter estimation 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

r.v. 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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An estimator for the mean (expectation value) 

Parameter: 

Estimator: 

We find: 

(‘sample mean’) 
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An estimator for the variance 

Parameter: 

Estimator: 

(factor of n-1 makes this so) 

(‘sample 
variance’) 

We find: 

where 
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The likelihood function 
Suppose the entire result of an experiment (set of measurements) 
is a collection of numbers x, and suppose the joint pdf for 
the data x is a function that depends on a set of parameters θ: 

Now evaluate this function with the data obtained and 
regard it as a function of the parameter(s).  This is the 
likelihood function: 

(x constant) 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Maximum likelihood estimators 
If the hypothesized θ is close to the true value, then we expect  
a high probability to get data like that which we actually found. 

So we define the maximum likelihood (ML) estimator(s) to be  
the parameter value(s) for which the likelihood is maximum. 

 ML estimators not guaranteed to have any ‘optimal’ 
 properties, (but in practice they’re very good). 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 



G. Cowan  DESY Terascale School of Statistics / 19-23 Feb 2018 / Day 1  27 

ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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ML example:  parameter of exponential pdf (3) 

For the ML estimator  

For the exponential distribution one has for mean, variance: 

we therefore find 

→ 

→ 
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Functions of ML estimators 

Suppose we had written the exponential pdf as 
i.e., we use λ = 1/τ.  What is the ML estimator for λ? 

For a function (with unique inverse) λ(τ) of a parameter τ, it  
doesn’t matter whether we express L as a function of λ or τ. 

The ML estimator of a function λ(τ) is simply   

So for the decay constant we have 

Caveat:    is biased, even though is unbiased. 

(bias →0 for n →∞) Can show 
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Example of ML:  parameters of Gaussian pdf 
Consider independent x1, ..., xn,  with xi ~ Gaussian (µ,σ2) 

The log-likelihood function is 
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Example of ML:  parameters of Gaussian pdf (2) 
Set derivatives with respect to µ, σ2 to zero and solve, 

We already know that  the estimator for µ  is unbiased. 

But we find, however, so ML estimator 

for σ2 has a bias, but b→0 for n→∞.  Recall, however, that 

is an unbiased estimator for σ2. 
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Variance of estimators:  Monte Carlo method 
Having estimated our parameter we now need to report its 
‘statistical error’, i.e., how widely distributed would estimates 
be if we were to repeat the entire measurement many times. 

One way to do this would be to simulate the entire experiment 
many times with a Monte Carlo program (use ML estimate for MC). 

For exponential example, from  
sample variance of estimates 
we find: 

Note distribution of estimates is roughly 
Gaussian − (almost) always true for  
ML in large sample limit. 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 

Minimum Variance 
Bound (MVB)  
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with exponential: 

Not quite parabolic ln L since finite sample size (n = 50). 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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Example of ML with 2 parameters 
Consider a scattering angle distribution with x = cos θ, 

or if xmin < x < xmax, need always to normalize so that  

Example:  α = 0.5, β = 0.5, xmin = -0.95, xmax = 0.95,  
generate n = 2000 events with Monte Carlo. 
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Example of ML with 2 parameters:  fit result 
Finding maximum of ln L(α, β) numerically (MINUIT) gives 

N.B.  No binning of data for fit, 
but can compare to histogram for 
goodness-of-fit (e.g. ‘visual’ or χ2).  

(Co)variances from (MINUIT routine  
HESSE) 
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Two-parameter fit:  MC study 
Repeat ML fit with 500 experiments, all with n = 2000 events: 

Estimates average to ~ true values; 
(Co)variances close to previous estimates; 
marginal pdfs approximately Gaussian. 
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The ln Lmax - 1/2 contour 

For large n, ln L takes on quadratic form near maximum: 

The contour  is an ellipse: 
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(Co)variances from ln L contour 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

Correlations between estimators result in an increase 
in their standard deviations (statistical errors). 

The α, β plane for the first 
MC data set 
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ML with binned data 
Often put data into a histogram: 

Hypothesis is  where 

If we model the data as multinomial (ntot constant),   

then the log-likelihood function is: 
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ML example with binned data 
Previous example with exponential, now put data into histogram: 

Limit of zero bin width → usual unbinned ML. 

If ni treated as Poisson, we get extended log-likelihood: 
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Relationship between ML and Bayesian estimators 
In Bayesian statistics, both θ and x are random variables: 

Recall the Bayesian method: 

Use subjective probability for hypotheses (θ); 

before experiment, knowledge summarized by prior pdf π(θ); 

use Bayes’ theorem to update prior in light of data: 

Posterior pdf (conditional pdf for θ given x) 
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ML and Bayesian estimators (2) 
Purist Bayesian:  p(θ | x) contains all knowledge about θ. 

Pragmatist Bayesian:  p(θ | x) could be a complicated function, 

→ summarize using an estimator  

Take mode of p(θ | x) ,  (could also use e.g. expectation value) 

What do we use for π(θ)?  No golden rule (subjective!), often 
represent ‘prior ignorance’ by π(θ) = constant, in which case 

But... we could have used a different parameter, e.g., λ = 1/θ, 
and if prior πθ(θ) is constant, then πλ(λ) = πθ(θ(λ)) |dθ/dλ| is not!   

 ‘Complete prior ignorance’ is not well defined. 
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Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In a Subjective Bayesian analysis, using  objective priors can be an  
important part of the sensitivity analysis. 
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Priors from formal rules (cont.)  
In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  For a review see: 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
 energy physics, arxiv:1002.1111 (Feb 2010) 
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Jeffreys’ prior 
According to Jeffreys’ rule, take prior according to 

where 

is the Fisher information matrix. 

One can show that this leads to inference that is invariant under 
a transformation of parameters. 

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson  
mean µ it is proportional to 1/√µ.  
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“Invariance of inference” with Jeffreys’ prior 
Suppose we have a parameter θ, to which we assign a prior πθ(θ). 

An experiment gives data x, modeled by L(θ) = P(x|θ). 

Bayes’ theorem then tells us the posterior for θ: 

Now consider a function η(θ), and we want the posterior P(η|x). 

This must follow from the usual rules of transformation of 
random variables:    
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“Invariance of inference” with Jeffreys’ prior (2) 
Alternatively, we could have just starting with η as the parameter 
in our model, and written down a prior pdf πη(η). 

Using it, we express the likelihood as L(η) = P(x|η) and write Bayes’  
theorem as 

If the priors really express our degree of belief, then they must  
be related by the usual laws of probability πη(η) = πθ(θ(η)) |dθ/dη|, 
and in this way the two approaches lead to the same result. 

But if we choose the priors according to “formal rules”, then this is 
not guaranteed.  For the Jeffrey’s prior, however, it does work!   

Using πθ(θ) ∝√I(θ) and transforming to find P(η|x) leads to  
the same as using πη(η) ∝√I(η)  directly with Bayes’ theorem. 
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Jeffreys’ prior for Poisson mean 

Suppose n ~ Poisson(µ).  To find the Jeffreys’ prior for µ, 

So e.g. for µ = s + b, this means the prior π(s) ~ 1/√(s + b),  which 
depends on b.  But this is not designed as a degree of belief  about s. 
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The method of least squares 
Suppose we measure N values, y1, ..., yN,  
assumed to be  independent Gaussian  
r.v.s with  

Assume known values of the control 
variable x1, ..., xN and known variances 

The likelihood function is 

We want to estimate θ, i.e., fit the curve to the data points. 
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The method of least squares (2) 

The log-likelihood function is therefore 

So maximizing the likelihood is equivalent to minimizing 

Minimum defines the least squares (LS) estimator  

Very often measurement errors are ~Gaussian and so ML 
and LS are essentially the same. 

Often minimize χ2 numerically (e.g. program MINUIT). 
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LS with correlated measurements 
If the yi follow a multivariate Gaussian, covariance matrix V, 

Then maximizing the likelihood is equivalent to minimizing 
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Linear LS problem 



G. Cowan  DESY Terascale School of Statistics / 19-23 Feb 2018 / Day 1  56 

Linear LS problem (2) 
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Linear LS problem (3) 

Equals MVB if yi Gaussian) 
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Example of least squares fit 

Fit a polynomial of order p: 
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Variance of LS estimators 
In most cases of interest we obtain the variance in a manner 
similar to ML.  E.g. for data ~ Gaussian we have 

and so 

or for the graphical method we  
take the values of θ where 

1.0 
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Two-parameter LS fit 
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Goodness-of-fit with least squares 
The value of the χ2 at its minimum is a measure of the level 
of agreement between the data and fitted curve: 

It can therefore be employed as a goodness-of-fit statistic to 
test the hypothesized functional form λ(x; θ). 

We can show that if the hypothesis is correct, then the statistic  
t = χ2

min follows the chi-square pdf, 

where the number of degrees of freedom is  

       nd  = number of data points - number of fitted parameters 
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Goodness-of-fit with least squares (2) 
The chi-square pdf has an expectation value equal to the number  
of degrees of freedom, so if χ2

min ≈  nd the fit is ‘good’. 

More generally, find the p-value: 

E.g. for the previous example with 1st order polynomial (line), 

whereas for the 0th order polynomial (horizontal line), 

This is the probability of obtaining a χ2
min as high as the one 

we got, or higher, if the hypothesis is correct. 
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Goodness-of-fit vs. statistical errors 
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Goodness-of-fit vs. stat. errors (2) 
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LS with binned data 
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LS with binned data (2) 
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LS with binned data — normalization 
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LS normalization example 
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Using LS to combine measurements 
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Combining correlated measurements with LS 
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Example: averaging two correlated measurements 
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Negative weights in LS average 
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Unfolding:  formulation of the problem 

New goal:  construct  
estimators for the µj (or pj). 

“true” histogram 

Consider a random variable y, goal is to determine pdf f(y). 

If parameterization f(y;θ) known, find e.g. ML estimators    . 

If no parameterization available, construct histogram:   

 θ̂
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Migration 

discretize:  data are 

response 
matrix 

Effect of measurement errors:  y = true value, x = observed value, 

 migration of entries between bins, 

 f(y) is ‘smeared out’, peaks broadened. 

Note µ, ν are constants; n subject to statistical fluctuations. 
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Efficiency, background 

efficiency 

Sometimes an observed event is due to a background process: 

Sometimes an event goes undetected: 

βi = expected number of background events in observed histogram. 

For now, assume the βi are known.  
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The basic ingredients 

“true” “observed” 
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Summary of ingredients 
‘true’ histogram: 

probabilities: 

expectation values for observed histogram: 

observed histogram: 

response matrix: 

efficiencies: 

expected background: 

These are related by: 
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Maximum likelihood (ML) estimator 
from inverting the response matrix 

Assume  can be inverted: 

Suppose data are independent Poisson: 

So the log-likelihood is 

ML estimator is  
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Example with ML solution 

Catastrophic 
failure??? 
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What went wrong? 

Suppose µ really had a lot of 
fine structure. 

Applying R washes this 
out, but leaves a residual 
structure: 

But we don’t have ν, only n.   R-1 “thinks” fluctuations in n are  
the residual of original fine structure, puts this back into  µ̂.
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ML solution revisited 

For Poisson data the ML estimators are unbiased: 

Their covariance is: 

(Recall these statistical errors were huge for the example shown.) 
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ML solution revisited (2) 
The information inequality gives for unbiased estimators the  
minimum (co)variance bound: 

invert → 

This is the same as the actual variance!  I.e. ML solution gives 
smallest variance among all unbiased estimators, even though 
this variance was huge. 

In unfolding one must accept some bias in exchange for a 
(hopefully large) reduction in variance. 
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Correction factor method 

Nonzero bias unless MC = Nature.  

Often Ci ~ O(1) so statistical errors far smaller than for ML. 
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Reality check on the statistical errors 

Suppose for some bin i we have:  

Example from Bob Cousins 

But according to the estimate, only 10 of the 100 events 
found in the bin belong there; the rest spilled in from outside. 

How can we have a 10% measurement if it is based on only 10 
events that really carry information about the desired parameter? 

(10% stat. 
error) 
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Discussion of correction factor method 

As with all unfolding methods, we get a reduction in statistical 
error in exchange for a bias; here the bias is difficult to quantify 
(difficult also for many other unfolding methods). 

The bias should be small if the bin width is substantially larger  
than the resolution, so that there is not much bin migration. 

So if other uncertainties dominate in an analysis, correction factors 
may provide a quick and simple solution (a “first-look”). 

Still the method has important flaws and it would be best to 
avoid it. 
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Regularized unfolding 
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Regularized unfolding (2) 
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Tikhonov regularization 

Solution using Singular Value Decomposition (SVD). 
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SVD implementation of Tikhonov unfolding 
A.  Hoecker, V. Kartvelishvili, NIM A372 (1996) 469; 
(TSVDUnfold in ROOT). 

Minimizes  

Numerical implementation using Singular Value Decomposition. 

Recommendations for setting regularization parameter τ: 

 Transform variables so errors ~ Gauss(0,1); 
 number of transformed values significantly different  
 from zero gives prescription for τ; 
 or base choice of τ on unfolding of test distributions. 
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SVD example 
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Regularization function based on entropy 

Can have Bayesian motivation: 
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Example of entropy-based unfolding 
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Estimating bias and variance 

G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Choosing the regularization parameter 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Choosing the regularization parameter (2) 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Some examples with Tikhonov regularization 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Some examples with entropy regularization 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Stat. and sys. errors of unfolded solution 
In general the statistical covariance matrix of the unfolded  
estimators is not diagonal; need to report full 

But unfolding necessarily introduces biases as well, corresponding 
to a systematic uncertainty (also correlated between bins). 

 This is more difficult to estimate.  Suppose, nevertheless, 
 we manage to report both Ustat and Usys. 

To test a new theory depending on parameters θ, use e.g. 

Mixes frequentist and Bayesian elements; interpretation of result 
can be problematic, especially if Usys itself has large uncertainty.   
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Folding 
Suppose a theory predicts f(y) → µ (may depend on parameters θ). 

Given the response matrix R and expected background β, this  
predicts the expected numbers of observed events:  

From this we can get the likelihood, e.g., for Poisson data, 

And using this we can fit parameters and/or test, e.g., using 
the likelihood ratio statistic 
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Versus unfolding 
If we have an unfolded spectrum and full statistical and 
systematic covariance matrices, to compare this to a model µ 
compute likelihood 

where 

Complications because one needs estimate of systematic bias Usys. 

If we find a gain in sensitivity from the test using the unfolded 
distribution, e.g., through a decrease in statistical errors, then we  
are exploiting information inserted via the regularization (e.g.,  
imposed smoothness). 
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ML solution again 
From the standpoint of testing a theory or estimating its parameters,  
the ML solution, despite catastrophically large errors, is equivalent 
to using the uncorrected data (same information content). 

There is no bias (at least from unfolding), so use 

The estimators of θ should have close to optimal properties: 
zero bias, minimum variance. 

The corresponding estimators from any unfolded solution cannot 
in general match this. 

Crucial point is to use full covariance, not just diagonal errors. 
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Unfolding discussion 
Unfolding can be a minefield and is not necessary if goal is to  
compare measured distribution with a model prediction. 

Even comparison of uncorrected distribution with future theories  
not a problem, as long as it is reported together with the expected  
background and response matrix. 

 In practice complications because these ingredients have 
 uncertainties, and they must be reported as well.  

Unfolding useful for getting an actual estimate of the distribution 
we think we’ve measured; can e.g. compare ATLAS/CMS. 

Model test using unfolded distribution should take account of  
the (correlated) bias introduced by the unfolding procedure. 



Finally... 
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Estimation of parameters is usually the “easy” part of 
statistics: 

 Frequentist:  maximize the likelihood. 

 Bayesian:  find posterior pdf and summarize (e.g. mode). 

 Standard tools for quantifying precision of estimates: 
 Variance of estimators, confidence intervals,... 

But there are many potential stumbling blocks: 

 bias versus variance trade-off (how many parameters to fit?); 

 goodness of fit (usually only for LS or binned data); 

 choice of prior for Bayesian approach; 

 unexpected behaviour in LS averages with correlations,... 
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Extra slides 
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Some distributions 
Distribution/pdf  Example use in HEP 
Binomial   Branching ratio 
Multinomial   Histogram with fixed N 
Poisson   Number of events found 
Uniform   Monte Carlo method 
Exponential   Decay time 
Gaussian   Measurement error 
Chi-square   Goodness-of-fit 
Cauchy   Mass of resonance 
Landau   Ionization energy loss 
Beta    Prior pdf for efficiency 
Gamma   Sum of exponential variables 
Student’s t   Resolution function with adjustable tails 
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Binomial distribution 
Consider N independent experiments (Bernoulli trials): 

outcome of each is ‘success’ or ‘failure’, 
probability of success on any given trial is p. 

Define discrete r.v. n = number of successes (0 ≤ n ≤  N). 

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is 

But order not important; there are 

ways (permutations) to get n successes in N trials, total  
probability for n is sum of probabilities for each permutation. 
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Binomial distribution  (2) 
The binomial distribution is therefore 

random 
variable 

parameters 

For the expectation value and variance we find: 
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Binomial distribution  (3) 
Binomial distribution for several values of the parameters: 

Example:  observe N decays of W±,  the number n of which are  
W→µν is a binomial r.v., p = branching ratio. 
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Multinomial distribution 
Like binomial but now m outcomes instead of two, probabilities are 

For N trials we want the probability to obtain: 

n1 of outcome 1, 
n2 of outcome 2, 

 ⠇ 
nm of outcome m. 

This is the multinomial distribution for 
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Multinomial distribution (2) 
Now consider outcome i as ‘success’, all others as ‘failure’. 

→ all ni individually binomial with parameters N, pi 

for all i 

One can also find the covariance to be 

Example:   represents a histogram 

with m bins, N total entries, all entries independent. 
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Poisson distribution 
Consider binomial n in the limit 

→ n follows the Poisson distribution: 

Example:  number of scattering events 
n with cross section σ found for a fixed 
integrated luminosity, with 
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Uniform distribution 
Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is: 

N.B.  For any r.v. x with cumulative distribution F(x), 
y = F(x) is uniform in [0,1]. 

Example:  for π0 → γγ, Eγ is uniform in [Emin, Emax], with 
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Exponential distribution 
The exponential pdf for the continuous r.v. x is defined by: 

Example:  proper decay time t of an unstable particle 

(τ = mean lifetime) 

Lack of memory (unique to exponential): 
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Gaussian distribution 
The Gaussian (normal) pdf for a continuous r.v. x is defined by: 

Special case: µ = 0, σ2 = 1   (‘standard Gaussian’): 

(N.B. often µ, σ2 denote 
mean, variance of any 
r.v., not only Gaussian.) 

If y ~ Gaussian with µ, σ2, then  x = (y - µ) /σ  follows φ(x). 
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Gaussian pdf and the Central Limit Theorem 
The Gaussian pdf is so useful because almost any random 
variable that is a sum of a large number of small contributions 
follows it.  This follows from the Central Limit Theorem: 

For n independent r.v.s xi with finite variances σi
2, otherwise 

arbitrary pdfs, consider the sum 

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s. 

In the limit n → ∞, y is a Gaussian r.v. with 
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Central Limit Theorem (2) 
The CLT can be proved using characteristic functions (Fourier 
transforms), see, e.g., SDA Chapter 10. 

Good example:  velocity component vx of air molecules. 

OK example:  total deflection due to multiple Coulomb scattering. 
(Rare large angle deflections give non-Gaussian tail.) 

Bad example:  energy loss of charged particle traversing thin 
gas layer.  (Rare collisions make up large fraction of energy loss, 
cf. Landau pdf.) 

For finite n, the theorem is approximately valid to the 
extent that the fluctuation of  the sum is not dominated by 
one (or few) terms.  

Beware of measurement errors with non-Gaussian tails. 
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Multivariate Gaussian distribution 
Multivariate Gaussian pdf for the vector  

are column vectors,  are transpose (row) vectors,  

For n = 2 this is 

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient. 
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Chi-square (χ2) distribution 
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by 

n = 1, 2, ... =  number of ‘degrees of 
                       freedom’ (dof) 

For independent Gaussian xi, i = 1, ..., n, means µi, variances σi
2, 

follows χ2 pdf with n dof. 

Example:  goodness-of-fit test variable especially in conjunction 
with method of least squares. 
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Cauchy (Breit-Wigner) distribution 
The Breit-Wigner pdf for the continuous r.v. x is defined by 

(Γ = 2, x0 = 0 is the Cauchy pdf.) 

E[x] not well defined,   V[x] →∞. 

x0 = mode (most probable value) 

Γ = full width at half maximum 

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ... 

Γ = decay rate (inverse of mean lifetime) 



G. Cowan  DESY Terascale School of Statistics / 19-23 Feb 2018 / Day 1  120 

Landau distribution 
For a charged particle with β = v /c traversing a layer of matter 
of thickness d, the energy loss Δ follows the Landau pdf: 

L. Landau, J. Phys. USSR 8 (1944) 201; see also 
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253. 

+ - + - 

- + - + β

d 

Δ
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Landau distribution  (2) 

Long ‘Landau tail’ 
     →  all moments ∞ 

Mode (most probable  
value) sensitive to β , 
     →  particle i.d. 
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Beta distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
between finite limits.  
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Gamma distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
in [0,∞]. 

Also e.g. sum of n exponential 
r.v.s or time until nth event 
in Poisson process ~ Gamma 
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Student's t distribution 

ν = number of degrees of freedom 
      (not necessarily integer) 

ν = 1 gives Cauchy, 

ν → ∞ gives Gaussian. 


