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Basic formalism:  likelihood
Suppose the outcome of a measurement is a collection of
numbers x (scalar or vector) – here, the “data”.

And suppose a model (hypothesis H) predicts the probability for 
the data:

Often a family of models is indexed by a set of parameters, i.e.,

If we view this as a function of the model (or of the parameters),
then this is the likelihood; often written
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Frequentist approach
Frequentist statistics:  probability only associated with data x, 
not hypotheses or parameters.

Hypothesis (or model or parameter value) is “preferred” if the 
model predicts a high probability for data like what we got.

Important tools:
Maximum likelihood estimator for parameters
Hypothesis test of size α

Reject H if data found in critical region w with 
P(x in w | H) ≤ α

p-value of hypothesis H
= P(x equally or more incompatible with H | H)

Confidence interval at CL = 1 – α
= set of parameter values with p-value > α
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Bayesian approach
Probability associated with both data and hypotheses

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Requires prior probabilities for all relevant parameters/hypotheses.

Inference follows from the posterior probability, e.g., point estimate 
from mode of posterior, credible intervals,...

For both Bayesian and Frequentist approaches, the model P(x|θ) is a 
fundamental ingredient.
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Systematic uncertainties and nuisance parameters
In general, our model of the data is not perfect:

x

P
(x

|θ
)

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter ↔ systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Combinations: simplest case
Suppose two measurements yield independent data whose model 
contains a parameter μ understood to be the same for both.

x ~ P(x |μ)

y ~ P(y | μ)

Goal:  combine the information from x and y to estimate/test μ.

If x and y are independent, then the joint probability for the data is

P(x, y | μ) = P(x | μ) P(y | μ)

= L( μ)                ←  the likelihood

So use this for e.g. 

Frequentist:  maximum likelihood, p-value, conf. interval

Bayesian:  use in Bayes’ theorem → posterior P(μ | x, y) 
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Combo with nuisance parameters
Suppose that the models contains a nuisance parameters θ, λ, ξ,
in addition to the parameter of interest μ, where θ is common to 
both models but λ and ξ are not.

x ~ P(x |μ, θ, λ)

y ~ P(y |μ, θ, ξ)

Auxiliary measurements to constrain the nuisance parameters:

u ~ P(u |θ, λ, ξ)

If the primary and auxiliary measurements are independent, then
the joint probability for x, y and u is

P(x, y, u | μ, θ, λ, ξ) = P(x |μ, θ, λ) P(y |μ, θ, ξ) P(u | θ, λ, ξ)

Having θ common to the models for both x and y corresponds to 
a “correlated systematic”.  
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Example of a combination
Fit a straight line:  f(x; θ0, θ1) = θ0 + θ1 x

2 data sets with 3 measurements each: Data set 1 only:
θ0 = 3.13 ± 1.07 
θ1 = -0.30 ± 0.49
p-value = 0.82

Data set 2 only:
θ0 = 9.90 ± 3.98 
θ1 = -0.65 ± 0.49
p-value = 0.60

Combination:
θ0 = 2.10 ± 0.54 
θ1 = 0.303 ± 0.092
p-value = 0.21

Minimize

data set 1

data set 2

Inspiration from Louis 
Lyons via Olaf Behnke
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Results from combination

combined 
fit

In this example the combination leads to a very large reduction
in the uncertainties.
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More nuisance parameters
But what if we allowed for systematic biases in each of the
two data sets, i.e.,

auxiliary 
measurements

nuisance
parameters

−2lnL(θ, λ) becomes:

for data set 1:

for data set 2:
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Independent nuisance parameters
Separately adjustable λ1 and λ2 each with independent Gaussian
distributed estimate ui, ~Gauss(λ1, σu)

Combination now 
prefers negative 
slope parameter θ1,
since each data set 
can tolerate some 
separate vertical 
shift.

combined 
fit
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Common nuisance parameter
Alternatively, we might have λ1 = λ2 ≡ λ, so minimize

Now the two data sets
can only move up and 
down coherently, so the 
slope parameter θ1
from the combination is 
again very accurate.

The key (and the hard 
part) in a combination is 
identifying common 
nuisance parameters.
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Errors on Errors
https://xkcd.com/2110/ Randall Munroe, xkcd.com

Details in G. Cowan, Eur. 
Phys. J. C (2019) 79:133, 
arXiv:1809.05778

Collaborators include: 
Enzo Canonero (RHUL), 
Alessandra Brazzale (U. 
Padova)
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Motivation
Analyses that are limited by systematic uncertainties become
sensitive to the assigned values of systematic errors.

But these error estimates are also uncertain (→ errors on errors)

Could just try inflating the systematic error estimates, but this 
turns out not to be enough, especially if the analysis uses least 
squares (equivalent to assuming Gaussian pdfs in likelihood).

Need for “errors on errors” most visible when measurements are 
not internally consistent within their estimated uncertainties.

Candidate use cases in particle physics:
Combinations of inconsistent measurements
Analyses where systematic error assigned by ad hoc recipe
Any analysis where assigned systematic error is uncertain
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Motivation (2)
Assuming known standard deviations for least squares, uncertainty 
(e.g. confidence interval) does not reflect goodness of fit:

Least squares average of 9 ± 1 and 11 ± 1 is  10 ± 0.71

Least squares average of 5 ± 1 and 15 ± 1 is 10 ± 0.71

Width of confidence interval for the mean does not reflect the 
consistency of the values being averaged.
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Formulation of the problem
Suppose measurements y have probability (density) P(y|μ,θ), 

μ = parameters of interest
θ = nuisance parameters

To provide info on nuisance parameters, often treat their best 
estimates u as indep. Gaussian distributed r.v.s., giving likelihood

or log-likelihood (up to additive const.)
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Systematic errors and their uncertainty
Sometimes σu,i is well known, e.g., it is itself a statistical error 
known from sample size of a control measurement.

Other times the ui are from an indirect measurement, Gaussian 
model approximate and/or the σu,i are not exactly known.

Or sometimes σu,i is at best a guess that represents an 
uncertainty in the underlying model (“theoretical error”).

In any case we can allow that the σu,i are not known in general 
with perfect accuracy.
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Gamma model for variance estimates
Suppose we want to treat the systematic errors as uncertain,
so let the σu,i be adjustable nuisance parameters.

Suppose we have estimates si for σu,i or equivalently vi = si
2, is an 

estimate of σu,i
2.

Model the vi as independent and gamma distributed:

Set α and β so that they give desired relative uncertainty r in σu.

Other ”bell-shaped” models tried; qualitatively similar results.

Gamma pdf leads to important mathematical simplifications.
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Distributions of v and s = √v
For α, β of  gamma distribution, 

relative “error on error”
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Treated like data: y1,...,yL (the primary measurements)
u1,...,uN (estimates of nuisance par.)
v1,...,vN (estimates of variances

of estimates of NP)

Adjustable parameters:    μ1,...,μM (parameters of interest)
θ1,...,θN (nuisance parameters)
σu,1,...,σu,N (sys. errors = std. dev. of

of NP estimates)
Fixed parameters:     r1,...,rN (rel. err. in estimate of σu,i)

Likelihood for Gamma Variance Model
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Profiling over systematic errors
We can profile over the σu,i in closed form

which gives the profile log-likelihood (up to additive const.)

In limit of small ri and vi → σu,i
2, the log terms revert back to the 

quadratic form seen with known σu,i.
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Equivalent likelihood from Student’s t

We can arrive at same likelihood by defining

Since ui ~ Gauss and vi ~ Gamma, zi ~ Student’s t

with 

Resulting likelihood same as profile Lʹ(μ,θ) from gamma model 
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Curve fitting, averages
Suppose independent 
yi ~ Gauss, i = 1,...,N, with

μ are the parameters of interest in the fit function φ(x;μ), 

θ are bias parameters constrained by control measurements 
ui ~ Gauss(θi, σu,i), so that if σu,i are known we have
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Profiling over θi with known σu,i

Profiling over the bias parameters θi for known σu,i gives usual 
least-squares (BLUE) 

Widely used technique for curve fitting in Particle Physics.

Generally in real measurement, ui = 0.

Generalized to case of correlated yi and ui by summing 
statistical and systematic covariance matrices.
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Curve fitting with uncertain σu,i

Suppose now σu,i
2 are adjustable parameters with gamma 

distributed estimates vi.

Retaining the θi but profiling over σu,i
2 gives

Profiled values of θi from solution to cubic equations
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Sensitivity of average to outliers
Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take r = 0.01 for all).
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Sensitivity of average to outliers (2)
Now suppose the measurement at 10 was actually at 20:

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r → 0).

“outlier”
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Average with all  r = 0.2
If we assign to each measurement r = 0.2, 

Estimate still at 10.00, size of interval moves 0.63 → 0.65
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Average with all  r = 0.2 with outlier
Same now with the outlier (middle measurement 10 → 20)

Estimate →10.75 (outlier pulls much less).

Half-size of interval → 0.78 (inflated because of bad g.o.f.).
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Naive approach to errors on errors
Naively one might think that the error on the error in the previous
example could be taken into account conservatively by inflating 
the systematic errors, i.e., 

But this gives 

without outlier (middle meas. 10)

with outlier (middle meas. 20)

So the sensitivity to the outlier is not reduced and the size of the
confidence interval is still independent of goodness of fit.
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Conclusions on errors on errors
Gamma model for variance estimates gives confidence intervals
that increase in size when the data are internally inconsistent,
and gives decreased sensitivity to outliers.

Method assumes that meaningful ri values can be assigned and 
is valuable when systematic errors are not well known but 
enough “expert opinion” is available to do so.

Equivalence with Student’s t model, ν = 1/2r2 degrees of 
freedom.

Simple profile likelihood – quadratic terms replaced by logs:
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Discussion / Conclusions on combinations
The fundamental approach to combinations is to construct a 
likelihood that represents all the measurements.

Need to identify common nuisance parameters that are 
common.

Sometimes not enough information available to reconstruct a 
meaningful likelihood (only have p-values, confidence 
intervals,...)

This can be a difficult situation – best to try to cobble 
together some approximation to the likelihood; include 
additional nuisance parameters as appropriate.

Many aspects not treated due to time, e.g., Bayesian methods; 
see e.g. G. Cowan, arXiv:1012.3589.
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Extra slides



G. Cowan DESY 2nd Pan-Europ. School of Stat. / 29 March 2022 35

Example with nuisance parameters

Suppose x follows the pdf

and we have an 
i.i.d. data sample:

Goal:  estimate 
parameter of interest θ;
the rest are nuisance 
parameters.
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Example with nuisance parameters (2)

Would be smaller if nuisance 
parameter ξ were to be 
exactly known.

Standard deviation of 
estimator θ from tangents 
to contour

^

Presence of nuisance
params. inflates 
uncertainty on 
param. of interest
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Auxiliary measurement to constrain nuisance param.

The aux. measurement u
compresses the contour 
in both the ξ and θ
directions and thus 
decreases the uncertainty 
on the estimate of θ.

So often include an auxiliary measurement that constrains ξ, 
e.g., suppose u ~ Gauss(ξ, σu).
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Motivation for gamma model
If one were to have n independent observations u1,..,un,  with all 
u ~ Gauss(θ, σu

2),  and we use the sample variance

to estimate σu
2, then (n-1)v/σu

2 follows a chi-square distribution
for n−1 degrees of freedom, which is a special case of the
gamma distribution (α = n/2, β = 1/2).  (In general one doesn’t
have a sample of ui values, but if this were to be how v was 
estimated, the gamma model would follow.)

Furthermore choice of the gamma distribution for v allows one
to profile over the nuisance parameters σu

2 in closed form and 
leads to a simple profile likelihood.
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Example:  average of two measurements

Increased discrepancy
between values to be 
averaged gives larger
interval.

Interval length saturates
at ~level of absolute 
discrepancy between 
input values.

MINOS interval (= approx. confidence interval) based on

with

relative error 
on sys. error
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Goodness of fit

Can quantify goodness of fit with statistic

where Lʹ (φ,θ) has an adjustable φi for each yi (the saturated
model).

Asymptotically should have q ~ chi-squared(N−M).

For increasing ri, may need Bartlett correction or MC.
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Distributions of q
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Distributions of Bartlett-corrected qʹ
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Correlated uncertainties
The phrase “correlated uncertainties” usually means that a single
nuisance parameter affects the distribution (e.g., the mean) of more 
than one measurement.   

For example, consider measurements y, parameters of interest μ,
nuisance parameters θ with 

That is, the θi are defined here as contributing to a bias and
the (known) factors Rij determine how much θj affects yi.

As before suppose one has independent control measurements 
ui~ Gauss(θi, σui).



G. Cowan DESY 2nd Pan-Europ. School of Stat. / 29 March 2022 44

Correlated uncertainties  (2)

The total bias of yi can be defined as 

which can be estimated with

These estimators are correlated having covariance

In this sense the present method treats “correlated uncertainties”,
i.e., the control measurements ui are independent, but nuisance
parameters affect multiple measurements, and thus bias estimates
are correlated.
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PDG scale factor

Suppose we do not want to take the quoted errors as
known constants.   Scale the variances by a factor ϕ,

The likelihood 
function becomes

The estimator for μ is the same as before; for ϕ ML gives 

which has a bias; is unbiased.

The variance of μ is inflated by ϕ:^
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Bayesian approach

Given measurements: 

and (usually) covariances:

Predicted value:

control variable parameters bias

Frequentist approach:

Minimize

expectation value
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Its Bayesian equivalent

and use Bayes’ theorem:

To get desired probability for θ, integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator, 
σθ same as from χ2 = χ2

min + 1.  (Back where we started!)

Take

Joint probability
for all parameters



Bayesian approach with non-Gaussian prior πb(b)

Suppose now the experiment is characterized by

where si is an (unreported) factor by which the systematic error is 
over/under-estimated.

Assume correct error for a Gaussian πb(b) would be siσi
sys, so

Width of σs(si) reflects
‘error on the error’.



Error-on-error function πs(s)
A simple unimodal probability density for 0 < s < 1 with 
adjustable mean and variance is the Gamma distribution:

Want e.g. expectation value 
of 1 and adjustable standard 
Deviation σs , i.e., 

mean = b/a
variance = b/a2

In fact if we took πs (s) ~ inverse Gamma, we could find πb(b)
in closed form (cf. D’Agostini, Dose, von Linden).  But Gamma 
seems more natural & numerical treatment not too painful.

s



Prior for bias πb(b) now has longer tails

Gaussian (σs = 0)      P(|b| > 4σsys)  =  6.3 × 10-5

σs = 0.5                    P(|b| > 4σsys)  =  0.65%

b



A simple test
Suppose a fit effectively averages four measurements.

Take σsys = σstat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(μ|y):

Usually summarize posterior p(μ|y) 
with mode and standard deviation:

experiment

m
ea

su
re

m
en

t

μ
p(
μ|

y)



Simple test with inconsistent data
Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.  See also

Posterior p(μ|y):

experiment

m
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su
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t

μ

p(
μ|

y)



Goodness-of-fit vs. size of error
In LS fit, value of minimized χ2 does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high χ2 corresponds to a larger error (and vice versa).

2000 repetitions of
experiment, σs = 0.5,
here no actual bias.

χ2

σμ from least squares

post-
erior


