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Prototype search analysis 

Search for signal in a region of phase space; result is histogram
of some variable x giving numbers:

Assume the ni are Poisson distributed with expectation values

signal

where

background

strength parameter
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Prototype analysis (II)

Often also have a subsidiary measurement that constrains some
of the background and/or shape parameters:

Assume the mi are Poisson distributed with expectation values

nuisance parameters (θs, θb,btot)

Likelihood function is
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The profile likelihood ratio

Base significance test on the profile likelihood ratio:

maximizes L for
specified μ

maximize L

Define critical region of test of μ by the region of data space
that gives the lowest values of λ(μ). 

Important advantage of profile LR is that its distribution 
becomes independent of nuisance parameters in large sample 
limit.
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Test statistic for discovery

Suppose relevant alternative to background-only (μ = 0) is μ ≥ 0.

So take critical region for test of μ = 0 corresponding to high q0 

and > 0 (data characteristic for μ ≥ 0).

That is, to test background-only hypothesis define statistic

i.e. here only large (positive) observed signal strength is 
evidence  against the background-only hypothesis.

Note that even though here physically μ ≥ 0, we allow 
to be negative.  In large sample limit its distribution becomes
Gaussian, and this will allow us to write down simple 
expressions for distributions of our test statistics.

m̂

m̂
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Distribution of q0 in large-sample limit

Assuming approximations valid in the large sample (asymptotic)
limit, we can write down the full distribution of q0 as

The special case μ′ = 0 is a “half chi-square” distribution: 

In large sample limit, f (q0|0) independent of nuisance parameters;
f (q0|μ′)  depends on nuisance parameters through σ.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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p-value for discovery

Large q0 means increasing incompatibility between the data
and hypothesis, therefore p-value for an observed q0,obs is

use e.g. asymptotic formula

From p-value get 
equivalent significance,
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Cumulative distribution of q0, significance

From the pdf, the cumulative distribution of q0 is found to be 

The special case μ′ = 0 is 

The p-value of the μ = 0 hypothesis is

Therefore the discovery significance Z is simply

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formula 

μ = param. of interest

b = nuisance parameter

Here take s known, τ = 1.

Asymptotic formula is 
good approximation to 5σ
level (q0 = 25) already for
b ~ 20.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554



G. Cowan / RHUL Physics LHC Flavour Physics School 2025 / Lecture 3 11

How to read the p0 plot
The “local” p0 means the p-value of the background-only
hypothesis obtained from the test of μ = 0 at each individual 
mH, without any correct for the Look-Elsewhere Effect.

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (μ = 1) at each mH.

ATLAS, Phys. Lett. B 716 (2012) 1-29

The blue band gives the
width of the distribution
(±1σ) of significances
under assumption of the
SM Higgs.



I.e. when setting an upper limit, an upwards fluctuation of the data 
is not taken to mean incompatibility with the hypothesized μ :  

From observed qμ find p-value:

Large sample approximation:   

To find upper limit at CL = 1−α, set pμ = α and solve for μ.
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Test statistic for upper limits

For purposes of setting an upper limit on μ use

where

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formulae 

Consider again n ~ Poisson(μs + b), m ~ Poisson(τb)
Use qμ to find p-value of hypothesized μ values.

E.g.  f (q1|1) for p-value of μ =1.

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e.,
q1 = 2.69 or  Z1 = √q1 =  1.64.

Median[q1 |0] gives “exclusion 
sensitivity”.

Here asymptotic formulae good
for s = 6, b = 9.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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How to read the green and yellow limit plots
For every value of mH, find the upper limit on μ.

Also for each mH, determine the distribution of upper limits μup one 
would obtain under the hypothesis of μ = 0.  

The dashed curve is the median μup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution.

ATLAS, Phys. Lett. B 716 (2012) 1-29
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I.  Discovery sensitivity for counting experiment with b known:

 (a)

 (b)  Profile likelihood 
              ratio test & Asimov:

II.  Discovery sensitivity with uncertainty in b, σb:

 (a)
 
 (b)  Profile likelihood ratio test & Asimov:

Expected discovery significance for counting
experiment with background uncertainty
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Counting experiment with known background

Count a number of events n ~ Poisson(s+b), where

 s = expected number of events from signal,

 b = expected number of background events.

Usually convert to equivalent significance:

To test for discovery of signal compute p-value of s = 0 hypothesis,

where Φ is the standard Gaussian cumulative distribution, e.g.,
Z > 5 (a 5 sigma effect) means p < 2.9 ×10−7.

To characterize sensitivity to discovery, give expected (mean
or median) Z under assumption of a given s.
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s/√b for expected discovery significance

For large s + b, n → x ~ Gaussian(μ,σ) , μ = s + b, σ = √(s + b).

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),:

Significance for rejecting s = 0 is therefore

Expected (median) significance assuming signal rate s is
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Better approximation for significance

Poisson likelihood for parameter s is

So the likelihood ratio statistic for testing s = 0 is

To test for discovery use profile likelihood ratio:

For now 
no nuisance 
params.
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Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks’ theorem), 

To find median[Z|s], let n → s + b (i.e., the Asimov data set):

This reduces to s/√b for s << b.
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n ~ Poisson(s+b),  median significance,
assuming s, of the hypothesis s = 0

“Exact” values from MC,
jumps due to discrete data.

Asimov √q0,A good approx.
for broad range of s, b.

s/√b only good for s ≪ b.

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727
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Extending s/√b to case where b uncertain

The intuitive explanation of s/√b is that it compares the signal,
 s, to the standard deviation of n assuming no signal, √b.

Now suppose the value of b is uncertain, characterized by a 
standard deviation σb.

A reasonable guess is to replace √b by the quadratic sum of
√b and σb, i.e.,

This has been used to optimize some analyses e.g. where 
σb cannot be neglected.
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Profile likelihood with b uncertain

This is the well studied “on/off” problem:  Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...

Measure two Poisson distributed values:

 n ~ Poisson(s+b)         (primary or “search” measurement)

 m ~ Poisson(τb) (control measurement, τ known)

The likelihood function is

Use this to construct profile likelihood ratio (b is nuisance
parameter):
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Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

and in particular to test for discovery (s = 0), 



G. Cowan / RHUL Physics LHC Flavour Physics School 2025 / Lecture 3 24

Asymptotic significance

Use profile likelihood ratio for q0, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

Essentially same as in:



Or use the variance of b = m/τ,  
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Asimov approximation for median significance

To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

 n → s + b

 m → τb

,   to eliminate τ:ˆ
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Limiting cases

Expanding the Asimov formula in powers of s/b and
σb

2/b (= 1/τ) gives

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated 
with the Asimov data set.
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Testing the formulae:  s = 5
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Using sensitivity to optimize a cut
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”Errors on errors”

G. Cowan, Statistical Models with Uncertain Error Parameters, Eur. Phys. J. C (2019) 79:133, 
arXiv:1809.05778

E. Canonero, A. Brazzale and G. Cowan, Higher-order asymptotic corrections and their 
application to the Gamma Variance Model, Eur. Phys. J. C (2023) 83:1100, arXiv:2304.10574

The uncertainties on estimated systematic errors (“errors on 
errors”) can in general play an important role in many analyses, see:

It turns out that models that use
errors on errors have qualitatively
new, interesting, desirable features:

https://xkcd.com/2110/

Sensitivity to outliers reduced.

Confidence intervals sensitive to 
goodness of fit.

Effect on goodness of fit, p-values, 
significance.
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Formulation of the problem
Suppose measurements y have probability (density) P(y|μ,θ), 

 μ = parameters of interest

 θ = nuisance parameters

To provide info on nuisance parameters, often treat their best 
estimates u as indep. Gaussian distributed r.v.s., giving likelihood

or log-likelihood (up to additive const.)
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Systematic errors and their uncertainty

Often the θi could represent a systematic bias and its best 
estimate ui in the real measurement is zero.

The σu,i are the corresponding “systematic errors”.

Sometimes σu,i is well known, e.g., it is itself a statistical error 
known from sample size of a control measurement.

Other times the ui are from an indirect measurement, Gaussian 
model approximate and/or the σu,i  are not exactly known.

Or sometimes σu,i is at best a guess that represents an 
uncertainty in the underlying model (“theoretical error”).

In any case we can allow that the σu,i are not known in general 
with perfect accuracy.
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Gamma model for variance estimates

Suppose we want to treat the systematic errors as uncertain,
so let the σu,i be adjustable nuisance parameters.

Suppose we have estimates si for σu,i  or equivalently vi = si
2, is an 

estimate of σu,i
2.

Model the vi as independent and gamma distributed:

Set α and β so that they give desired mean and width for f (v):

   E[v] = σu
2  =  α/β,

   r = 1/2√α ≈ relative “error on the error” = σs/E[s] .
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Distributions of v and s = √v

For α, β of  gamma distribution, 

relative “error on error”
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Profiling over systematic errors

We can profile over the σu,i in closed form

which gives the profile log-likelihood (up to additive const.)

In limit of small ri and vi → σu,i
2, the log terms revert back to the 

quadratic form seen with known σu,i.
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Equivalent likelihood from Student’s t

We can arrive at same likelihood by defining

Since ui ~ Gauss and vi ~ Gamma, zi ~ Student’s t

with 

Resulting likelihood same as profile Lʹ(μ,θ) from gamma model 
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Example:  average of two measurements

Increased discrepancy
between values to be 
averaged gives larger
interval.

Interval length saturates
at ~level of absolute 
discrepancy between 
input values.

Approximate (”MINOS”) confidence interval based on

with

relative error 
on sys. error
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Sensitivity of average to outliers

Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take r = 0.01 for all).

inner error bars
= σy,i 

outer error bars 
= (σy,i

2 + σu,i
2)½ 
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Sensitivity of average to outliers (2)

Now suppose the measurement at 10 had come out at 20:

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r → 0).

“outlier”
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Average with all  r = 0.2

If we assign to each measurement r = 0.2, 

Estimate still at 10.00, size of interval moves 0.63 → 0.65
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Average with all  r = 0.2 with outlier

Same now with the outlier (middle measurement 10 → 20)

Estimate →10.75 (outlier pulls much less).

Half-size of interval → 0.78 (inflated because of bad g.o.f.).
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Naive approach to errors on errors

Naively one might think that the error on the error in the previous
example could be taken into account conservatively by inflating 
the systematic errors, i.e., 

But this gives 

without outlier (middle meas. 10)

with outlier (middle meas. 20)

So the sensitivity to the outlier is not reduced and the size of the
confidence interval is still independent of goodness of fit.
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Discussion on Gamma Variance Model
Other features of Gamma Variance Model (see EPJC (2019) 79:133 
and the extra slides)

 averages/fits become less sensitive to outliers; 

 confidence intervals linked to goodness of fit;

 straightforward to include multiple correlated error sources.

But... is part of the reason for requiring 5σ for discovery not to 
account for uncertainties in assigned errors?  Is there a trade-off  
between “errors on errors” and the requirement for discovery?

Best to have most realistic model.  If the estimated errors are 
indeed uncertain, this should be reflected in the model.

Bottom line – it is very difficult to establish convincing evidence 
for a new physics if relevant uncertainties are estimated in an ad 
hoc way.  We need robust procedures for their assignment.
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Finally

Three lectures only enough for a brief discussion of:

 Parameter estimation

 Hypothesis tests (→ path to Machine Learning)

 Limits (confidence intervals/regions)

 Systematics (nuisance parameters)

 Bayesian methods, MCMC

 A bit beyond... (“errors on errors”)

Final thought:  once the basic formalism is fixed, most of the 
work focuses on writing down the likelihood, e.g., P(x|θ), and 
including in it enough parameters to adequately describe the 
data (true for both Bayesian and frequentist approaches) so 
often best to invest most of your time with it.
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Extra Slides
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Bayesian model selection
Fundamentally the probability of a hypothesis Hi in the Bayesian 
approach is given by its posterior probability given the data:  
P(Hi|x).

Finding this requires assignment of prior probabilities to all 
hypotheses that are considered.

We can give the posterior odds (ratio of probabilities) for any pair 
of hypotheses Hi and Hj  (use Bayes’ theorem; factors of P(x) 
cancel):

posterior odds prior oddsBayes factor

See:  Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.
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The Bayes factor

The Bayes factor is regarded as measuring the weight of 
evidence of the data in support of Hi over Hj. and can be used 
much like a p-value (or Z value).

The Jeffreys scale, analogous to the 5σ rule in Particle Physics:

 B10   Evidence against H0

 --------------------------------------------
 1 to 3  Not worth more than a bare mention
 3 to 20  Positive
 20 to 150 Strong
 > 150  Very strong

The Bayes factor Bij is the likelihood ratio of the two hypotheses:

= posterior odds if one takes
prior odds equal to one.
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Marginal likelihood (evidence)

If the model Hi contains internal parameters θi, then these must 
be characterized by a prior pdf πi(θi |Hi) and marginalized:

This is called the “marginal likelihood” or “evidence” of Hi.

It is independent of the overall prior probability of Hi

but it depends on the prior pdf for the model’s internal 
parameters θi :
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Bayes factor for models with internal parameters

The Bayes factor is thus the ratio of marginal likelihoods for 
the two models:

Simplifying the notation, the numerator and denominator are 
both of the form

For high-dimensional θ these integrals can be very difficult to 
compute (more on this later).
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Priors for Bayes factors
Prior pdfs for the marginal likelihoods used in Bayes factors
cannot be improper, i.e., they cannot be defined only up to an 
arbitrary normalization constant, in which case Bij would not be 
well defined.

Suppose we try to take a ”non-informative” prior to be constant
out to some large cut-off, in the hope that the Bayes factor will 
decouple from it:

In such cases we find that the Bayes factor remains sensitive to 
the cut-off even for a → ∞.  

So all priors used for Bayes factors must reflect a meaningful 
degrees of uncertainty about the parameters.
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Bayes factor for Poisson counting experiment

Suppose n ~ Poisson(s + b) with b known.  We want to compare

The likelihoods of H0  and H1 are
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Suppose the prior pdf for the parameter s in H1 is:

The posterior probability for s given n is, assuming H1,

Bayes factor for Poisson counting experiment (2)

(0 ≤ s ≤ smax)

(0 ≤ s ≤ smax)

γ = lower 
incomplete
gamma 
function
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In the limit smax → ∞ this goes to

where 

is the lower incomplete gamma function.

Thus the posterior pdf for s given n under assumption of H1

decouples from smax in the limit smax → ∞, and hence we
can use this limiting case e.g. for finding an upper limit 
(credibility interval) for s.

Bayes factor for Poisson counting experiment (3)
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The hypothesis H0 has no internal parameters so its marginal 
likelihood is simply m0 = L(n| H0).  

The marginal likelihood of H1 is

Bayes factor for Poisson counting experiment (4)
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Bayes factor for Poisson counting experiment (5)

So the Bayes factor is

Example:  b = 2, n = 8

As smax increases the data 
start to  favour H1.

As smax increases further, 
the larger volume of H1’s 
parameter space penalizes 
it (Ockham’s razor).
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Numerical determination of Bayes factors

Both numerator and denominator of Bij are of the form

‘marginal likelihood’

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC).

 Harmonic Mean (and improvements)
 Importance sampling
 Parallel tempering (~thermodynamic integration)
 Nested Sampling (MultiNest), ...
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Harmonic mean estimator
E.g., consider only one model and write Bayes theorem as:

π(θ) is normalized to unity so integrate both sides,

Therefore sample θ from the posterior via MCMC and estimate m 
with one over the average of 1/L (the harmonic mean of L).

posterior
expectation

Called the “worst Monte Carlo method ever”
https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
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Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable;
formally infinite variance (!).  A variant (cf. Gelfand and Dey):

Rearrange Bayes thm; multiply 
both sides by arbitrary pdf f (θ):

Integrate over θ :

Improved convergence if tails of f (θ) fall off faster than L(x|θ)π(θ)

Note harmonic mean estimator is special case f (θ) = π(θ).
.
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Adaptive Harmonic Mean Integration

A. Caldwell et al., International Journal of Modern 
Physics A Vol. 35, No. 24 (2020) 2050142

Want to compute 

Define integral over subvolume Δ of Ω with volume VΔ

(Ω = support of f)

E.g.  f  (λ) = L(λ) π(λ) = unnormalized target density; we can 
sample from this with MCMC.
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Adaptive Harmonic Mean Integration (2)

Use these to estimate I:

“The task of estimating our integral, therefore reduces to choosing one or several
subspaces ∆ — typically small regions around local modes of f (λ). The full space
Ω over which the integration ought to be performed can be large or even infinite,
while this does not affect the outcome of our integral estimate.”

        A. Caldwell et al., IJMP A Vol. 35, No. 24 (2020) 2050142

Sample λ from f  (λ) using MCMC, estimate 
r = IΔ/I with fraction of points found in Δ:

If f  (λ) not small in Δ, then we can find IΔ from harmonic mean:



60G. Cowan / RHUL Physics LHC Flavour Physics School 2025 / Lecture 3

Adaptive Harmonic Mean Integration (3)
Testing AHMI with multimodal multidimensional Cauchy pdf

A. Caldwell et al., IJMP A Vol. 35, No. 24 (2020) 2050142

Challenging pdf because of long tails.

Good results for up to 7 dimensions for 
MCMC sample size of 106.

Software:  Bayesian Analysis Toolkit

https://github.com/bat/BAT.jl
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Importance sampling

Need pdf f (θ) which we can evaluate at arbitrary θ and also
sample with MC.

The marginal likelihood can be written

Best convergence when f (θ) approximates shape of L(x|θ)π(θ).

Use for f (θ) e.g. multivariate Gaussian with mean and covariance
estimated from posterior.

Sample θ ~ f (θ), compute average of L(x|θ) π(θ) / f (θ).
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Nested sampling

J. Skilling, Bayesian Analysis, No. 4, pp. 833-860 (2006) 

We want to compute 

Can add up portions of X  (equivalently, θ) space in any order.  Use

Write inverse function as so that the desired result is

Elements of θ space are sorted
by decreasing likelihood.

X near 1 means low λ, all of
θ space included.
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Nested sampling (2)
J. Skilling, Bayesian Analysis, No. 4, pp. 833-860 (2006) 

The evidence Z
is the area under
the curve of L(X).

Computational challenge is to sample θ space from prior subject 
to constraint L(θ) > λ.  Software:  MultiNest

Farhan Feroz, Mike Hobson, Mon. Not. Roy. Astron. Soc., 384, 2, 449-463 (2008); 
arXiv:0704.3704,

F. Feroz, M.P. Hobson, M. Bridges, Mon. Not. Roy. Astron. Soc. 398: 1601-1614,2009; 
arXiv:0809.3437 

F. Feroz, M.P. Hobson, E. Cameron, A.N. Pettitt, arXiv:1306.2144



64G. Cowan / RHUL Physics LHC Flavour Physics School 2025 / Lecture 3

Goodness of fit
Can quantify goodness of fit with statistic

where Lʹ (φ,θ) has an adjustable φi for each yi (the saturated model).

Asymptotically should have q ~ chi-squared(N−M).

For increasing ri, asymptotic distribution no longer valid.  

Bartlett (1937) defines modified statistic:

By construction q′ has mean nd = N-M and turns out to have a 
distribution significantly closer to the asymptotic chi-square. 
(See Canonero et al., Eur. Phys. J. C (2023) 83:1100.)
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Distributions of q



66G. Cowan / RHUL Physics LHC Flavour Physics School 2025 / Lecture 3

Distributions of Bartlett-corrected qʹ
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Application to the muon g − 2 anomaly

The recently measured muon g − 2 (ave. of 2006, 2021) disagrees 
with the Standard Model prediction with a significance of 4.2σ.

Muon g-2 Collab., PRL 126, 141801 (2021) 

Discrepancy significantly
reduced by 2021 lattice-
based prediction of Borsanyi 
et al. (BMW).

Current goal is to investigate 
sensitivity of significance to 
error assumptions, so for 
now focus on the 4.2σ 
problem.

G. Cowan, Effect of Systematic Uncertainty Estimation on the Muon g − 2 Anomaly, EPJ Web of 
Conferences 258, 09002 (2022), arXiv:2107.02652
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Muon g − 2 ingredients

the ingredients of the 4.2σ effect are:

Using

0.37 (stat.) ± 0.17 (sys.)

0.40 (Had. Vac. Pol.) ± 0.18 (Had. Light-by-Light)

(ave. of BNL 2006 and FNAL 2021)

(SM pred. by Muon g −2 theory initiative)
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Suppose σSM uncertain

Suppose measurement errors well known, but that the SM theory 
error σSM  (estimated 0.43) could be uncertain.

This is the largest systematic and probably hardest to estimate.

Treat estimate vSM = (0.43)2 of variance σ2
SM as gamma distributed, 

width from relative uncertainty parameter rSM.

Maximum-likelihood for mean from minimum of
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p-value/significance of common-mean  hypothesis

Significance (goodness of fit) from 

Because of non-quadratic term in Q(μ), distribution of q departs 
from chi-square(1) for increasing rSM.

Best to get distribution of q from Monte Carlo (and speed up with 
Bartlett correction – see EPJC (2019) 79:133).

For rSM > 0 distribution of q depends on σ2
SM.  For MC use 

Maximum-Likelihood estimate (“profile construction”):

# of sigmas
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Significance of discrepancy versus rSM

Naive model:  use least squares but let σSM → (1 + rSM) σSM

Gamma variance model gives greater decrease in significance for 

rSM ≳ 0.2, e.g., 3.1σ for rSM = 0.3, 2.0σ for rSM = 0.6.
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Significance of discrepancy versus rSM

Establishing 4σ effect requires rSM ≲ 0.3 even if nominal exp. 
and SM uncertainties become half of present values.
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