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Outline

General comments on statistical approach
Maximum Likelihood, Least squares
Nuisance parameters
Confidence intervals

Treatment of systematics
Profile Likelihood
Marginal Likelihood

“Errors on Errors” à la 
GDC, Eur. Phys. J. C (2019) 79:133, arXiv:1809.05778



G. Cowan HFLAV Workshop / Recommendations for Statistical Approach 3

Least Squares ← Maximum Likelihood

Warning – tails of Gaussian fall off very fast; 
“outliers” have strong influence on parameter estimates.

HFLAV averaging based on Least Squares, which follows from 
method of Maximum Likelihood e.g. if independent measured 
yi ~ Gaussian(f (xi;θ), σi)
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Systematic errors ↔ nuisance parameters

Suppose we have primary measurements y,
want to infer parameters of interest μ with model P(y |μ).

Model not perfect – need nuisance parameters → P(y |μ,θ).

“Converts” sys. error to part of overall stat. error 

Nuisance parameters decrease sensitivity to parameters of 
interest, so constrain using independent control measurements u,
which follow P(u | θ).  So now full likelihood is:

Often the control measurements u are estimates of the 
corresponding parameters θ, e.g., with Gaussian pdf.
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Combining measurements
Starting point:  reconstruct likelihood for full set of observed 
data and use to find a new limit.  E.g. for independent data:

Maybe likelihoods not available in full, need to approximate. 

Need some assumptions about parameters common to 
different terms in the likelihood.

Same basic approach for limits and averages:  start with best 
available approximation for the full likelihood.

parameters 
of interest

nuisance
parameters
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Uncertainty of fitted parameters
Suppose parameter of interest μ, nuisance parameter θ,
confidence interval for μ from  “profile likelihood”:

Width of interval in usual LS fit independent of goodness of fit. 



G. Cowan HFLAV Workshop / Recommendations for Statistical Approach 7

Profiling nuisance parameters

Test μ using profile likelihood ratio

Constrained  (profiled)  nuisance par.:

Wilks’ theorem:  

pdf f(tμ |μ,θ) in “large sample limit” + regularity conditions 
is chi-square with ndof = num. par. of interest, independent of 
nuisance par. θ.

To the extent that asymptotic pdf is good approx., inference about μ
is independent of the nuisance parameters.

p-value of μ:
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Marginalizing nuisance parameters
Alternatively, test μ with a statistic such as the likelihood
ratio using fixed (or estimated) values of nuisance parameters, 

The effect of the systematic uncertainty is built in by averaging
over θ with respect to π(θ) (→ “marginalize” over nuisance par.):

Assign prior (Bayesian) pdf  to nuisance parameters π(θ)
based on the control measurements:

,     here 

, π0(θ) e.g. const.

use for p-values,
CLs, etc.
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Profile vs. marginal likelihood approach

Obtained automatically if asymptotics à la Wilks holds.
Holds approximately if asymptotics not toο badly broken.

Approximate alternative:  reject μ if                       ,
profile construction (Cranmer); hybrid resampling (B. Sen et al.)

Strict frequentist approach:  test points in (μ, θ) space and reject
μ if                       for all θ.

Marginal approach does not test individual points in (μ, θ) 
space, rather the model for a given μ averaged over θ.

Marginal likelihood usually requires MC integration to find pdf 
of test statistic (e.g., qμ) needed to find p-value.

Results from profile and marginal likelihoods equal in simple
cases and very similar in “most cases of practical interest”.
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HFLAV approach for a bad fit
In cases where χ2/dof > 1, we do not usually scale the resulting 
uncertainty, in contrast to what is done by the Particle Data 
Group [5].  Rather, we examine the systematic uncertainties of 
each measurement to better understand them. Unless we find 
systematic discrepancies among the measurements, we do not 
apply any additional correction to the calculated uncertainty. 

HFLAV, arXiv:1909.12524

Reasonable but... to be rigorous one would prefer that the 
statistical procedure not be subject to a posteriori modifications. 
If one has reason to suspect that potential biases could be present, 
then this should be built into the original statistical model. 

GDC comment
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“Errors on Errors”

→  PDG “scale factor method” ≈ scale sys. errors with common 
factor until χ2

min = appropriate no. of degrees of freedom.
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https://xkcd.com/2110/ Randall Munroe, xkcd.com
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Formulation of the problem
Suppose measurements y have probability (density) P(y|μ,θ), 

μ = parameters of interest
θ = nuisance parameters

To provide info on nuisance parameters, often treat their best 
estimates u as indep. Gaussian distributed r.v.s., giving likelihood

or log-likelihood (up to additive const.)
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Systematic errors and their uncertainty
Often the θi could represent a systematic bias and its best 
estimate ui in the real measurement is zero.

The σu,i are the corresponding “systematic errors”.

Sometimes σu,i is well known, e.g., it is itself a statistical error 
known from sample size of a control measurement.

Other times the ui are from an indirect measurement, Gaussian 
model approximate and/or the σu,i  are not exactly known.

Or sometimes σu,i is at best a guess that represents an 
uncertainty in the underlying model (“theoretical error”).

In any case we can allow that the σu,i are not known in general 
with perfect accuracy.
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Gamma model for variance estimates
Suppose we want to treat the systematic errors as uncertain,
so let the σu,i be adjustable nuisance parameters.

Suppose we have estimates si for σu,i or equivalently vi = si
2, is an 

estimate of σu,i
2.

Model the vi as independent and gamma distributed:

Set α and β so that they give desired relative uncertainty r in σu.

Similar to method 2 in W.J. Browne and D. Draper, Bayesian 
Analysis, Volume 1, Number 3 (2006), 473-514.
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Distributions of v and s = √v
For α, β of  gamma distribution, 

relative “error on error”
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Motivation for gamma model
If one were to have n independent observations u1,..,un,  with all 
u ~ Gauss(θ, σu

2),  and we use the sample variance

to estimate σu
2, then (n-1)v/σu

2 follows a chi-square distribution
for n-1 degrees of freedom, which is a special case of the
gamma distribution (α = n/2, β = 1/2).  (In general one doesn’t
have a sample of ui values, but if this were to be how v was 
estimated, the gamma model would follow.)

Furthermore choice of the gamma distribution for v allows one
to profile over the nuisance parameters σu

2 in closed form and 
leads to a simple profile likelihood.
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Likelihood for gamma error model

Treated like data: y1,...,yL (the primary measurements)
u1,...,uN (estimates of nuisance par.)
v1,...,vN (estimates of variances

of estimates of NP)

Adjustable parameters:    μ1,...,μM (parameters of interest)
θ1,...,θN (nuisance parameters)
σu,1,...,σu,N (sys. errors = std. dev. of

of NP estimates)
Fixed parameters:     r1,...,rN (rel. err. in estimate of σu,i)
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Profiling over systematic errors
We can profile over the σu,i in closed form

which gives the profile log-likelihood (up to additive const.)

In limit of small ri and vi → σu,i
2, the log terms revert back to the 

quadratic form seen with known σu,i.



G. Cowan HFLAV Workshop / Recommendations for Statistical Approach 20

Equivalent likelihood from Student’s t

We can arrive at same likelihood by defining

Since ui ~ Gauss and vi ~ Gamma, zi ~ Student’s t

with 

Resulting likelihood same as profile Lʹ(μ,θ) from gamma model 
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Curve fitting, averages
Suppose independent 
yi ~ Gauss, i = 1,...,N, with

μ are the parameters of interest in the fit function φ(x;μ), 

θ are bias parameters constrained by control measurements 
ui ~ Gauss(θi, σu,i), so that if σu,i are known we have
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Profiling over θi with known σu,i

Profiling over the bias parameters θi for known σu,i gives usual 
least-squares (BLUE) 

Widely used technique for curve fitting in Particle Physics.

Generally in real measurement, ui = 0.

Generalized to case of correlated yi and ui by summing 
statistical and systematic covariance matrices.
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Curve fitting with uncertain σu,i

Suppose now σu,i
2 are adjustable parameters with gamma distributed

estimates vi.

Retaining the θi but profiling over σu,i
2 gives

Profiled values of θi from solution to cubic equations
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Goodness of fit

Can quantify goodness of fit with statistic

where Lʹ (φ,θ) has an adjustable φi for each yi (the saturated
model).

Asymptotically should have q ~ chi-squared(N-M).

For increasing ri, may need Bartlett correction or MC.
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Distributions of q
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Distributions of Bartlett-corrected qʹ
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Example:  average of two measurements

Increased discrepancy
between values to be 
averaged gives larger
interval.

Interval length saturates
at ~level of absolute 
discrepancy between 
input values.

MINOS interval (= approx. confidence interval) based on

with

relative error 
on sys. error
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Same with interval from pμ = α with 
nuisance parameters profiled at μ
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Coverage of intervals
Consider previous average of 
two numbers but now generate
for i = 1, 2 data values

yi ~ Gauss(μ, σy,i)
ui ~ Gauss(0, σu,i)
vi ~ Gamma(σu,i, ri)
σy,i = σu,i = 1

and look at the probability 
that the interval covers the
true value of μ.

Coverage stays reasonable
to r ~ 0.5, even not bad
for Profile Construction
out to r ~ 1.
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Sensitivity of average to outliers
Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take r = 0.01 for all).
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Sensitivity of average to outliers (2)
Now suppose the measurement at 10 was actually at 20:

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r → 0).

“outlier”
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Average with all  r = 0.2
If we assign to each measurement r = 0.2, 

Estimate still at 10.00, size of interval moves 0.63 → 0.65
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Average with all  r = 0.2 with outlier
Same now with the outlier (middle measurement 10 → 20)

Estimate →10.75 (outlier pulls much less).

Half-size of interval → 0.78 (inflated because of bad g.o.f.).
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Naive approach to errors on errors
Naively one might think that the error on the error in the previous
example could be taken into account conservatively by inflating 
the systematic errors, i.e., 

But this gives 

without outlier (middle meas. 10)

with outlier (middle meas. 20)

So the sensitivity to the outlier is not reduced and the size of the
confidence interval is still independent of goodness of fit.
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Correlated uncertainties
The phrase “correlated uncertainties” usually means that a single
nuisance parameter affects the distribution (e.g., the mean) of more 
than one measurement.   

For example, consider measurements y, parameters of interest μ,
nuisance parameters θ with 

That is, the θi are defined here as contributing to a bias and
the (known) factors Rij determine how much θj affects yi.

As before suppose one has independent control measurements 
ui~ Gauss(θi, σui).
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Correlated uncertainties  (2)

The total bias of yi can be defined as 

which can be estimated with

These estimators are correlated having covariance

In this sense the present method treats “correlated uncertainties”,
i.e., the control measurements ui are independent, but nuisance
parameters affect multiple measurements, and thus bias estimates
are correlated.
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Discussion / Conclusions (1)
My view:  general approach of HFLAV is perfectly reasonable.

Report confidence interval/region (plus covariance?),
systematics from profiling nuisance parameters.

Clarify treatment of common nuisance parameters.

Recommend some tweaks of notation and vocabulary:

Greek letters for parameters, Latin letters for data
CL → p-value

Recommend avoiding a posteriori changes to model
in case of bad fit (→ “errors on errors”?)
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Discussion / Conclusions (2)
Gamma model for variance estimates gives confidence intervals
that increase in size when the data are internally inconsistent,
and gives decreased sensitivity to outliers (known property of 
Student’s t based regression).

Equivalence with Student’s t model, ν = 1/2r2 degrees of freedom.

Simple profile likelihood – quadratic terms replaced by logarithmic:
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Discussion / Conclusions (3)
Asymptotics can break for increased error-on-error, may need 
Bartlett correction or MC. 

Method assumes that meaningful ri values can be assigned 
and is valuable when systematic errors are not well known but 
enough “expert opinion” is available to do so.

Alternatively one could try to fit a global r to all systematic
errors, analogous to PDG scale factor method or meta-analysis
à la DerSimonian and Laird.  (→ future work).

Could also use e.g. as “stress test” – crank up the ri values 
until significance of result degrades and ask if you really trust 
the assigned systematic errors at that level.
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Extra slides
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Curve Fitting History:  Least Squares
Method of Least Squares by Laplace, Gauss, Legendre, Galton...

C.F. Gauss, Theoria Combinationis Observationum Erroribus
Minimis Obnoxiae, Commentationes Societatis Regiae Scientiarium
Gottingensis Recectiores Vol. V (MDCCCXXIII).

To fit curve f (x;θ) to data yi± σi, 
adjust parameters θ = (θ1,..., θM)
to minimize

Assumes σi known.

yi± σi

f (x;θ)
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Goodness of fit
If the hypothesized model f (x;θ) is correct, χ2

min should
follow a chi-square distribution for N (# meas.) – M (# fitted par.)
degrees of freedom; expectation value = N – M.  

Suppose initial guess for model is:      f (x;θ) = θ0 + θ1x

χ2
min =  20.9,

N – M = 9 – 2 = 7,
so goodness of fit is “poor”.

This is an indication that the
model is inadequate, and thus
the values it predicts will 
have a “systematic error”.
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Systematic errors ↔ nuisance parameters

Estimators for all parameters correlated, and as a consequence 
the presence of the nuisance parameters inflates the statistical 
errors of the parameter(s) of interest.

Solution: fix the model, generally by inserting additional 
adjustable parameters (“nuisance parameters”).  Try, e.g.,

χ2
min = 3.5, N – M = 6

For some point in the
enlarged parameter space
we hope the model is
now ~correct.

Sys. error gone?

f (x;θ) = θ0 + θ1x + θ2x2
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Least Squares for Averaging
= fit of horizontal line

Raymond T. Birge, 
Probable Values of the 
General Physical Constants 
(as of January 1, 1929), 
Physical Review 
Supplement, Vol 1, Number 
1, July 1929

Forerunner of the 
Particle Data Group

http://bancroft.berkeley.edu/Exhibits/physics/learning01.html
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Errors on theory errors, e.g., in QCD
Uncertainties related to theoretical
predictions are notoriously difficult
to quantify, e.g., in QCD may come
from variation of renormalization
scale in some “appropriate range”.

Problematic e.g. for αs →

If, e.g., some (theory) errors are
underestimated, one may obtain poor
goodness of fit, but size of confidence 
interval from usual recipe will not 
reflect this.

An outlier with an underestimated 
error bar can have an inordinately 
strong influence on the average.

M. Tanabashi et al. (Particle Data Group), 
Phys. Rev. D 98, 030001 (2018)
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Developments of LS for Averaging
Much work in HEP and elsewhere on application/extension of
least squares to the problem of averaging or meta-analysis, e.g.,

A. C. Aitken, On Least Squares and Linear Combinations of 
Observations, Proc. Roy. Soc. Edinburgh 55 (1935) 42.

L. Lyons, D. Gibaut and P. Clifford, How to Combine Correlated 
Estimates of a Single Physical Quantity,  Nucl. Instr. Meth. A270 
(1988) 110.

A. Valassi, Combining Correlated Measurements of Several 
Different Physical Quantities, Nucl. Instr. Meth. A500 (2003) 391.

R. Nisius, On the combination of correlated estimates of a physics 
observable,  Eur. Phys.  J.  C 74 (2014) 3004.

R. DerSimonian and N. Laird, Meta-analysis in clinical trials, 
Controlled Clinical Trials 7 (1986) 177-188.
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Single-measurement model
As a simplest example consider

y ~ Gauss(μ, σ2), 

v ~ Gamma(α, β),

Test values of μ with tμ = -2 ln λ(μ) with 
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Distribution of tμ

From Wilks’ theorem, in the asymptotic limit we should
find tμ ~ chi-squared(1).

Here “asymptotic limit” means all estimators ~Gauss, which
means r → 0.  For increasing r, clear deviations visible:
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Distribution of tμ (2)
For larger r, breakdown of asymptotics gets worse:

Values of r ~ several tenths are relevant so we cannot in general
rely on asymptotics to get confidence intervals, p-values, etc.
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Bartlett corrections
One can modify tμ defining

such that the new statistic’s distribution is better approximated 
by chi-squared for nd degrees of freedom (Bartlett, 1937).

For this example E[tμ] ≈ 1 + 3r2 +  2r4 works well:
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Bartlett corrections (2)
Good agreement for r ~ several tenths out to √tμʹ ~ several, i.e.,
good for significances of several sigma:



G. Cowan HFLAV Workshop / Recommendations for Statistical Approach 52

68.3% CL confidence interval for μ
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Gamma model for estimates of variance
Suppose the estimated variance v was obtained as the sample
variance from n observations of a Gaussian distributed bias 
estimate u.

In this case one can show v is gamma distributed with 

We can relate α and β to the relative uncertainty r in the systematic
uncertainty as reflected by the standard deviation of the sampling
distribution of s,  σs
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Exact relation between r parameter 
and relative error on error

r parameter defined as: 

v ~ Gamma(α, β) so s = √v follows a Nakagami distribution
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Exact relation between r parameter 
and relative error on error (2)

The exact relation between the error and the error rs and
the parameter r is therefore 

→  rs ≈ r good for r ⪅ 1.
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PDG scale factor

Suppose we do not want to take the quoted errors as
known constants.   Scale the variances by a factor ϕ,

The likelihood 
function becomes

The estimator for μ is the same as before; for ϕ ML gives 

which has a bias; is unbiased.

The variance of μ is inflated by ϕ:^
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Bayesian approach

Given measurements: 

and (usually) covariances:

Predicted value:

control variable parameters bias

Frequentist approach:

Minimize

expectation value
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Its Bayesian equivalent

and use Bayes’ theorem:

To get desired probability for θ, integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator, 
σθ same as from χ2 = χ2

min + 1.  (Back where we started!)

Take

Joint probability
for all parameters



Bayesian approach with non-Gaussian prior πb(b)

Suppose now the experiment is characterized by

where si is an (unreported) factor by which the systematic error is 
over/under-estimated.

Assume correct error for a Gaussian πb(b) would be siσi
sys, so

Width of σs(si) reflects
‘error on the error’.



Error-on-error function πs(s)
A simple unimodal probability density for 0 < s < 1 with 
adjustable mean and variance is the Gamma distribution:

Want e.g. expectation value 
of 1 and adjustable standard 
Deviation σs , i.e., 

mean = b/a
variance = b/a2

In fact if we took πs (s) ~ inverse Gamma, we could find πb(b)
in closed form (cf. D’Agostini, Dose, von Linden).  But Gamma 
seems more natural & numerical treatment not too painful.

s



Prior for bias πb(b) now has longer tails

Gaussian (σs = 0)      P(|b| > 4σsys)  =  6.3 × 10-5

σs = 0.5                    P(|b| > 4σsys)  =  0.65%

b



A simple test
Suppose a fit effectively averages four measurements.

Take σsys = σstat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(μ|y):

Usually summarize posterior p(μ|y) 
with mode and standard deviation:

experiment

m
ea

su
re

m
en

t

μ
p(
μ|

y)



Simple test with inconsistent data
Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.  See also

Posterior p(μ|y):

experiment

m
ea

su
re

m
en

t

μ

p(
μ|

y)



Goodness-of-fit vs. size of error
In LS fit, value of minimized χ2 does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high χ2 corresponds to a larger error (and vice versa).

2000 repetitions of
experiment, σs = 0.5,
here no actual bias.

χ2

σμ from least squares

post-
erior


