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Preface

Why error bars on error bars’p Randall Munroe, xkcd.com https://xkcd.com/2110/

* Not just an extra layer of
complexity:

* Reduces sensitivity to -
outliers in fit/combination '

e @Gives connection between : - . - \

goodness of fit and size of T DONT KNOL HoU T PROPAGATE

confidence intervals FRROR CORRECTLY, 50 T JUST PUT
ERROR BARS ON ALL MY ERROR BARS.

Based on work esp. with Enzo Canonero:

G. Cowan, Eur. Phys. J. C(2019) 79:133; arXiv:1809.05778

G. Cowan, , EPJ Web of Conferences 258, 09002 (2022); arXiv:2107.02652

E. Canonero, A. Brazzale and G. Cowan, Eur. Phys. J. C (2023) 83:1100; arXiv:2304.10574
E. Canonero, G. Cowan, Eur. Phys. J. C (2025) 85: 156; arXiv:2407.05322

G. Cowan / RHUL Physics Manchester Bohr Seminar /13 Feb 2026



http://bancroft.berkeley.edu/Exhibits/physics/learning01.html

Least Squares for Averaging

= fit of horizontal line
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Least squares: some issues

The method of least squares requires the standard deviations of
the measured quantities, but often these are poorly known.

The uncertainty (e.g. confidence interval) of an LS average does
not reflect goodness of fit:

LS averageof 9 = 1and 11 £ 1is10 = 0.71
LS average of 5 = 1and 15 = 1is10 = 0.71

LS estimators are equivalent to maximume-likelihood assuming
Gaussian distributed measurements; but the tails of a Gaussian
fall off very fast, not always an appropriate model.

— Qutliers in LS average have very large influence.

Solution: incorporate the uncertainty in the standard deviations
of the measurements into the analysis.
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“Errors on Errors”

APRIL 15, 1932 PHYSICAL REVIEW VOLUME 40

THE CALCULATION OF ERRORS BY THE
METHOD OF LEAST SQUARES

Bv Ravvonp T. BirGE
UNIVERsSITY OF (CALIFORNIA, BERKELEY

(Received February 18, 1932)

ABSTRACT

Present status of least squares’ calculations.—There are three possible stages
in any least squares’ calculation, involving respectively the evaluation of (1) the most
probable values of certain quantities from a set of experimental data, (2) the reliability
or probable error of each quantity so calculated, (3) the reliability or probable error
of the probable errors so calculated. Stages (2) and (3) are not adequately treated in
most texts, and are frequently omitted or misused, in actual work. The present article
is concerned mainly with these two stages.

— PDG “scale factor method” = scale sys. errors with common
factor until y2,_. = appropriate no. of degrees of freedom.
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Formulation of the problem

Suppose measurements y have probability (density) P(y|u,0),
u = parameters of interest
0 = nuisance parameters

To provide info on nuisance parameters, often treat their best
estimates u as indep. Gaussian distributed r.v.s., giving likelihood

L(p,8) = P(y.u|p.0) = P(y|p,0)P(ulf)

Hz—ﬁt}gfﬂﬂ'
P(y|u, ) H mgﬂ
or log-likelihood (up to additive const.)
1 N u; — 93' 2
In L(12.60) = In P(y[ps.0) — 3 3“7
i=1 u;
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Systematic errors and their uncertainty

Often the 6, could represent a systematic bias and its best
estimate u; in the real measurement is zero.

The g, ; are the corresponding “systematic errors”.

Sometimes g, ; is well known, e.g., it is itself a statistical error
known from sample size of a control measurement.

Other times the u; are from an indirect measurement, Gaussian
model approximate and/or the ¢, ; are not exactly known.

Or sometimes o,,; is at best a guess that represents an
uncertainty in the underlying model (“theoretical error”).

In any case we can allow that the g, ; are not known in general
with perfect accuracy.
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Gamma distribution for variance estimates

Suppose we want to treat the systematic errors as uncertain,
so let the g, ; be adjustable nuisance parameters.

Suppose we have estimates s; for g,,; or equivalently v, = s, is an
estimate of g, *.

Model the v; as independent and gamma distributed:

f(v;a, B) = il v@ Le=PY Elv] = B
y F(CE) V[ ‘] a
e

Set a and f so that they give desired mean and width for f(v):

Elvl=0, = a/pB,
¢ = 1/2\a = relative “error on the error” = o/E[s] .
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f(vice,B)

Distributions of v and s = \v

. 1
For a, f of gamma distribution, o = 4— , B = 122 2
: Sl ey
8'—1 N
1T = = = — ~ .
2FE[v;] 202  El[s] ¥~ relative “error on error”
T
5 =10
—E- — £=005
- £=0.1
R N R —— e=02
—— £=05
6 | =10
4t
| fg.—f’”—r:—:?‘;I %:‘%‘T‘:-—-—-H i
. Og— 05 15 2 25
v S
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Motivation for Gamma Variance Model (GVM)

If one were to have n independent observations u,,..,u,, with all
u ~ Gauss(d, 0,7), and we use the sample variance

1 & _
n—lZ(ui -u)°

i=1

) =

to estimate 0,2, then (n—1)v/o,? follows a chi-square distribution
for n—1 degrees of freedom, which is a special case of the
gamma distribution (a = n/2, f = 1/2). (In general one doesn’t
have a sample of u; values, but if this were to be how v was
estimated, the gamma model would follow.)

Furthermore choice of the gamma distribution for v allows one
to profile over the nuisance parameters ¢, in closed form and
leads to a simple profile likelihood.

G. Cowan / RHUL Physics Manchester Bohr Seminar /13 Feb 2026 10



Likelihood for gamma variance model
N

1
L(p,8,00) = Plylp.0)]]

i—1 A f?’?‘['ﬂfi

E—(Hi—ﬂi}gfz'?ﬁi

i a; = 1/4¢?
X i v le P .,
F((_‘Ei) t p;=aijo,
Treated like data: ViseensVI (the primary measurements)
Uiy, Uy (estimates of nuisance par.)
Vipees VN (estimates of variances

of estimates of NP)

Adjustable parameters: u,...,uy;  (parameters of interest)
0,,....0y  (nuisance parameters)
O, 150, n (Sys.errors =std. dev. of
of NP estimates)

Fixed parameters: &1,.-6y  (rel.err.in estimate of 5, )
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Profiling over systematic errors

We can profile over the g, ;in closed form

= v; + 262 (u; — 0;)?
2 = argmax L(u, 6, - :
u %,2 (w,6,0 ) 1—|—2&?z

Ug

which gives the profile log-likelihood (up to additive const.)

In limit of small ¢; and v; — ¢, %, the log terms revert back to the

u,i ’

quadratic form seen with known o, ;.

G. Cowan / RHUL Physics Manchester Bohr Seminar /13 Feb 2026 12



Equivalent likelihood from Student’s ¢

We can arrive at same likelihood by defining 2;

Since u, ~ Gauss and v, ~ Gamma, z; ~ Student’s ¢

v;+1
T (%t 2\ ~7 1
f(zilvi) = ( = ) 14+ L with v =
Vit (vi/2) Vi i

Resulting likelihood same as profile L'(u,0) from gamma model

N (”"‘1) AN
L(p,0) = P(y|u,0) || NN D) (1+;'{)

3—1 i
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Curve fitting, averages . dota

@(x; {)

Suppose independent ? |
y; ~ Gauss, i = 1,...,N, with > ¢

Elyi| = ¢(zisp) +0;,

Vil = r:ri_ (known).

X

u are the parameters of interest in the fit function o(x;u),

0 are bias parameters constrained by control measurements
u; ~ Gauss(0,, g, ,), so that if g, ;are known we have

N 2 2
yi — p(zisp) — 0 u; — 0;
_2111};(”’9) :Z ( (52#) ) 1+ ( JE )

i=1 i U4
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Profiling over 6, with known o, ;

Profiling over the bias parameters 6, for known o, ; gives usual
least-squares (BLUE)

o) — Y (i — i) —ui)? 2(0)
n »ur)—Z; R = (1
1= Ui U

Widely used technique for curve fitting in Particle Physics.
Generally in real measurement, u; = 0.

Generalized to case of correlated y;and u,; by summing
statistical and systematic covariance matrices.
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Curve fitting with uncertain o, ;

Suppose now g, ;> are adjustable parameters with gamma
distributed estimates v..

Retaining the 6; but profiling over g, * gives

o1n (s, 8) = i [(y«z — 90(37«::;#) —0;)* n (1 + 2;) In (1 + 2¢2 s — 9,5-)2)]

i=1 O'y?: 1 Ui

Profiled values of §; from solution to cubic equations:

vi + (1 + 2e?)02
933 + [_2Uz' — Y+ (:0?1] 932 =+ [ : 922 v Yy 2u?;(yz- — (,03') + ’LL,i2 0;
i
i (1+ 2¢7)07 u;
T [(%—yi)(ﬁ-Fuf)— 2&:2 . =0, i=1,...,N

G. Cowan / RHUL Physics Manchester Bohr Seminar /13 Feb 2026 16



Goodness of fit

Can quantify goodness of fit with statistic

.
L'(@,0)
N 2 2
i — @(Ti; ) — 0 1 i — 0
= min [(y (‘0(3:2”) ) +(1+2)1n(1+2s§(u ) )]
©,0 i1 in 2&'?-' Uy

where L' (9,0) has an adjustable ¢, for each y; (the saturated model).
Asymptotically should have g ~ chi-squared(N—M).

For increasing ¢;, asymptotic distribution no longer valid.

nq

Bartlett (1937) defines modified statistic: ¢’ = mq

By construction ¢’ has mean ny= N—M and turns out to have a
distribution significantly closer to the asymptotic chi-square.
(See Canonero et al., Eur. Phys. J. C(2023) 83:1100.)
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Distributions of ¢

s
=1 N=2
£=02
1
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Distributions of Bartlett-corrected g’

= N=2
£=02
1
10- —Me
— ¥ pdf
102
10®
10 T
o) 25
ql
= 1 N=2
B =04
—1L
107 — MC
[ — i pdf
102
107°F
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Sensitivity of average to outliers

Suppose we average 5 values, y=8,9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take ¢ = 0.01 for all).

- 2D
u=10.00+0.63 * data
q =50 oA
20t H
p=029
£=0.01 (all)
15 F
inner error bars
} 1 ~ Opi
10 { T 1
{ * outer error bars
= (O-y,i2 + O-u, i2)1/2
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Sensitivity of average to outliers (2)

Now suppose the measurement at 10 had come out at 20:

> 29

20

15 |

10 |

i=1200+063
q' =449
p=41x10" {

£=0.01 (all

* data

o=

— U

T~

T~

H—a—
H—a—H

“outlier”

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with ¢ — 0).

G. Cowan / RHUL Physics
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Average with all €=0.2

If we assign to each measurement € = 0.2,

- 20
ﬁ =10.00 £ 0.65 * data
q’ = 49 o~
0t !
p=0.30
£=0.2 (all)
15

H—a—

10 {

——i—

Estimate still at 10.00, size of interval moves 0.63 - 0.65
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Average with all ¢ = 0.2 with outlier

Same now with the outlier (middle measurement 10 — 20)

- 25

i=1075+078 . daia
q'=305 —q

205 p=39x10% {
E = 0.2 {ﬂ“}

15 |

10 } ‘ } :

5

Estimate —10.75 (outlier pulls much less).

Half-size of interval — 0.78 (inflated because of bad g.o.f.).

G. Cowan / RHUL Physics Manchester Bohr Seminar /13 Feb 2026
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Naive approach to errors on errors

Naively one might think that the error on the error in the previous
example could be taken into account conservatively by inflating
the systematic errors, i.e.,

Ou;, — Oy, (1 + &)

But this gives

[t = 10.00 & 0.70 without outlier (middle meas. 10)

[t = 12.00£0.70 with outlier (middle meas. 20)

So the sensitivity to the outlier is not reduced and the size of the
confidence interval is still independent of goodness of fit.
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Application to top-quark mass

E. Canonero, G. Cowan, Eur. Phys. J. C(2025) 85: 156; arXiv:2407.05322 and
E. Canonero (thesis) inspirehep.net/literature/2971307

Based on: 2024 7-8 TeV ATLAS—CMS top quark mass combination,
https://doi.org/10.1103/physrevilett.132.261902. arXiv:2402.08713

tt final state CM Energy (TeV) myop * (stat) & (syst) (GeV) Total uncertainty (GeV)
All-hadronic [34] 7 173.49 £ 0.69 £ 1.23 +1.41
Dileptonic [35] 7 172.50 £ 0.43 £ 1.52 +1.58
Lepton+jets [36] 7 173.49 £ 043 +£0.97 +1.06
All-hadronic [37] 8 172.32 £ 0.25 £ 0.57 +0.62
Dileptonic [37] 8 172.22 £ 0.18 £ 0.94 +0.95
Lepton+jets [37] 8 172.35 £0.16 = 0.45 +0.48
Single top [38] 8 17295 +£0.77 £ 0.93 +1.20
J /¥ [39] 8 173.50 & 3.00 £+ 0.94 +3.14
Secondary vertex [40] 8 173.68 2020+t 1.11 +1.12

average:  my = 172.52 +0.14 (stat) £ 0.30 (syst) GeV
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Application to top-quark mass (2)

For the 8 largest systematics, apply errors-on-errors in turn:

173.0
--+- b-JES
| --+- b tagging
172.9 --+- ME generator
-e- JES1

; 172.8 +- JES 2
8 --+- Method
~ 172.7- --»- CMS b hadron BR
E - --+- QCD radiation
Q
S 172.6-
g e g—m———==——==cff=SSC=SSE=a="T ._---======:=:'
— e —— T T T T T T ;E;é%éé;EEEEE e e FT TP PPy
E 172.54 == ."‘—"!!!!:====i====:==55555EEEEEEEEEEEEEE*EEEEEEEEEEEE;5555555555555.
)
3
QO 172.4

172.3-

172.2 - . . T :

0.0 0.1 0.2 0.3 0.4 0.5 0.6

£
Estimated value of m, quite stable.

€ — O reproduces published average.
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Application to top-quark mass (3)

Size of error bar on average also fairly stable (expected since
input values in relatively good agreement).

—~ 0.5
>
Q
Q
E 0.4-
8 ------ @—cm—— =" -
C ——————————————— .' ———————
E ':=============t==:::===::===‘====Eii§§§E==3=::222!!!====t::::::::::===.======!lll====‘
& 0.3
Q
O
[
&
O 0.24 ~*- b-JES
@ -+~ b tagging
N
n --+- ME generator
= -e- JES1
® 0.1 -+ JES2
NS --e- Method
?ﬂ -~ CMS b hadron BR
oS --s- QCD radiation
© 0.0 , | | | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Es

Conclusion: this m, combination is robust wrt errors-on-errors.
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Application to top-quark mass (4)

If there were to be an outlier, things would change:
— include fictitious measurement m,=174.5 = 0.4 &= 0.5 GeV:

173.8 4 Includes fictitious measurement: ~*- NEW
mMEW = 174.5 + 0.4 + 0.5 GeV —*- bJES
--- b tagging

173.6- --+- ME generator
=~ -e- JES1
Q -e- JES2
Q. 173.4 -~ Method
g -+~ CMS b hadron BR
L 173.2 QCD radiation
= —-— Original Combination
©
>
= 173.0
5 t:::::::;;assecE:::EEfffffffffiiiéiiiiiiﬁi;EEEEEEiééé%Eiééééééééiéé&.éééééééééééiéi
Q 1990l T - __
Q1281 T —

““““““ ) e
172.6
172.4 !
0.0 0.1 0.2 0.3 0.4 0.5 0.6
s

If assigned small g, fictitious outlier pulls average significantly.
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Application to top-quark mass (5)

And with the fictitious outlier, error on average is inflated provided
one assumes the outliner has large enough ¢.

—~ 0.5
% Includes fictitious measurement:
9 mMNEW = 174.5 + 0.4 + 0.5 GeV
S o4
| -
Q
-'E' _______ @——mmmmmmm D ittty 1
= PRI
L e — -7 s -
g 0.34-ccca= == S T _.=..=.Q.=.===.=.==..=.=====Qssassas;;EE;;.&;EéssaEEF=;;’;;;;;;::;;;;;i‘
Q
O
Y
g --o- NEW
O 0.2{ * biJES
(] --+- b tagging
N
n --+- ME generator
ul -+~ JES1
£ 0.14 ~*- JES2
© -+~ Method
M --+- CMS b hadron BR
0 QCD radiation
© 0.0 | - . - -
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Es
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Enzo Canonero

Fitting with outliers (e.g., parton fits)

Fitting of a curve: compatible measurements |

* Fit of a quadratic function with two outliers

Fitted Curve with € = 0.01

—— True curve yl ~ f(xl) + Bl

----- Fitted curve (¢ = 1.00%)

68% Confidence Interval Params of interest
Data points with error bars

1.2

1.0

0.8{
0.6

0.4

f(x;)) = ax? + bx +c

f(x)

0.2

0.0

02 0.4 0.6 08 1.0

25
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Enzo Canonero

Fitting of a curve: compatible measurements [ b

* Fit of a quadratic function with two outliers

Fitted Curve with € = 0.21

—— True curve yl ~ f(xl) + Bl

----- Fitted curve (e = 21.00%)

. 68% Confidence Interval Params of interest
0.8 mu Data points with error bars

1.2

1.0

0.6

0.4

f(x;)) = ax? + bx +c

f(x)

0.2

0.0

0.2 0.4 0.6 0.8 1.0

26
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Fitting of a curve: compatible measurements

Enzo Canonero

ROYAL
HOLLOWAY

* Fit of a quadratic function with two outliers

1.2

1.0

0.8

0.6

0.4

f(x)

0.2

0.0

Fitted Curve with € = 0.41

—— True curve

Fitted curve (e = 41.00%)
68% Confidence Interval
Data points with error bars

........
.............

yi ~ f(x;)+0;

Params of interest

f(x;)) = ax? + bx +c

0.2 0.4 0.6 0.8

1.0
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Enzo Canonero

Fitting of a curve: compatible measurements Blibwy

* Fit of a quadratic function with two outliers

Fitted Curve with € = 0.61

—— True curve yi ~ f(xi) + 91'

..... Fitted curve (e = 61.00%)

68% Confidence Interval Params of interest
Data points with error bars

1.2

1.0¢

0.8{

0.6

f(x;) = ax? + bx+c

f(x)

Conclusion: The model is sensitive to
02 04 06 08 1o internal compatibility of the data

28
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Recent and Ongoing Developments
With Enzo Canonero, esp. Eur. Phys. J. C (2025) 85:156
* Fully extended to problems with correlated systematic uncertainties.

* Fast approximations of expectation values for Bartlett-corrected goodness
of fit and confidence intervals.

* Closed-form solutions for estimators (— fast profile-likelihood fitting).
» github.com/EnzoCanonero/GVM-Combinations Combination Toolkit

e Applications to estimates of top, W masses: EC, GDC EPJC (2025) 85:156
and EC thesis: inspirehep.net/literature/2971307

* |nvestigation of higher-order asymptotics: E. Canonero, A. Brazzale and G.
Cowan, Eur. Phys. J. C(2023) 83:1100; arXiv:2304.10574

* Application to muon g-2 anomaly: G. Cowan, , EPJ) Web of Conferences
258, 09002 (2022); arXiv:2107.02652

Parton fits (ongoing w/ Enzo Canonero, Georgia Brown)

* Preliminary (EC): errors-on-errors branch in gitlab.cern.ch/fitters/xfitter
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Discussion / Conclusions

Gamma Variance Model gives confidence intervals that increase
in size when the data are internally inconsistent, and gives

decreased sensitivity to outliers (known property of Student’s ¢
based regression).

Equivalence with Student’s t model, v = 1/2¢? degrees of freedom.

Simple profile likelihood — quadratic terms replaced by
logarithmic:

G. Cowan / RHUL Physics Manchester Bohr Seminar/ 13 Feb 2026 35



Discussion / Conclusions (2)

Asymptotics can break for increased error-on-error, may need
Bartlett correction, higher-order asymptotics or MC.

Method assumes that meaningful ¢; values can be assigned and is
valuable when systematic errors are not well known but enough
“expert knowledge” is available to do so.

Realistic approach: classify systematic uncertainties as:

= | good—¢e=0 (errorrelated to sample size)

O

bad — £¢=0.3 (~justified but still uncertain)

ugly —» ¢=0.6 (2-point sys., theory uncertainties)

Could also use e.g. as “stress test” — crank up the ¢; values until
significance of result degrades and ask if you really trust the
assigned systematic errors at that level (— muon g-2, m,, M,,,).

Ongoing: application to parton density fits, MC tuning,...
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Application to the muon g — 2 anomaly

The recently measured muon g — 2 (ave. of 2006, 2021) disagrees
with the Standard Model prediction with a significance of 4.20.

Muon g-2 Collab., PRL 126, 141801 (2021)

Discrepancy significantly

BNLg-2 ' ® : reduced by 2021 lattice-
based prediction of Borsanyi
FNAL g-2 - o : et al. (BMW).

Current goal is to investigate

< 4.20 > cle . . ape
sensitivity of significance to

error assumptions, so for

@ ! @
now focus on the 4.20
Standard Model Experiment
Average problem .

175 180 185 190 195 200 205 210 215

9
a,x 10 - 1165900 Here using 2021 meausrement; see also D. P.
Aguillard et al. (The Muon g-2 Collaboration)
Phys. Rev. Lett. 131, 161802 (2023)
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Muon g — 2 ingredients
Using a, = (9—2)/2 y = a, x 10° — 1165900

the ingredients of the 4.20 effect are:

Yexp = 20.61 £ 0.41 (ave. of BNL 2006 and FNAL 2021)

LN

N 0.37 (stat.) = 0.17 (sys.)
B. Abi et al. (Muon g—2 Collaboration), Measurement of the Positive Muon Anomalous
Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).

G. W. Bennett et al. (Muon g — 2 Collaboration), Final report of the E821 muon
anomalous magnetic moment measurement at BNL, Phys. Rev. D 73, 072003 (2006).

ysm = 18.10 £0.43 | (SM pred. by Muon g—2 theory initiative)

X,

N\
0.40 (Had. Vac. Pol.) == 0.18 (Had. Light-by-Light)

T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, and T. Blum et al., The anomalous
magnetic moment of the muon in the standard model, Phys. Rep. 887, 1 (2020).
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Suppose og,, uncertain

Suppose measurement errors well known, but that the SM theory
error og,, (estimated 0.43) could be uncertain.

This is the largest systematic and probably hardest to estimate.

Treat estimate vq = (0.43)? of variance o°,, as gamma distributed,
width from relative uncertainty parameter rq.

Maximume-likelihood for mean from minimum of

L(p
Q) = —2In L( )
sat

oxn — 2 1 . 2

SCTE Yot Y OIS 4 PN L2
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p-value/significance of common-mean hypothesis

Significance (goodness of fit) from ¢ = Q(i1).

Because of non-quadratic term in O(u), distribution of g departs
from chi-square(1) for increasing rq\.

Best to get distribution of g from Monte Carlo (and speed up with
Bartlett correction — see EPJC (2019) 79:133).

For rqy > 0 distribution of ¢ depends on ¢°y. For MC use
Maximum-Likelihood estimate (“profile construction”):

5. — UM+ 2rsu(ysm — A)°
SM 1+ 2rd),
MC — f(q) — p :/ f(q)dq — significance Z = ® (1 — p/2)
g,obs \

# of sigmas

G. Cowan / RHUL Physics Manchester Bohr Seminar /13 Feb 2026 41



Significance of discrepancy versus rqy

5
4 -
B
v 3°
(@]
[
o
L
= 2
[
o
wn
11 :
—— Gamma variance model
- == Naive model
0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6

I'sm

Naive model: use least squares but let oy — (1 + rg\) Ogm

Gamma variance model gives greater decrease in significance for
rev = 0.2, e.g., 3.10 for rqyy = 0.3, 2.00 for rqy, = 0.6.
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Significance of discrepancy versus rqy

10
— 2021 values
8 -—=-= Exp. unc. halved
Exp. and SM unc. halved

5
v 67
O
c
©
Y
'c
o
92]

0

00 01 02 03 04 05 06
I'sm

Establishing 40 effect requires rq,; < 0.3 even if nominal exp.
and SM uncertainties become half of present values.
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Discussion on muon g—2

Including uncertainties on estimates of uncertainties can have large
effect on hypothesis test, esp. for high significance.
To establish e.g. a So effect it is crucial to have both:

small uncertainties

accurate estimates of those uncertainties (~ 20% level)
This is ultimately because the tails of the Gaussian fall off so quickly.

Gamma Variance Model ~ Student’s ¢ likelihood with v = 1/272
degrees of freedom — longer tails than Gaussian.

Ongoing discussion with Bogdan Malaescu of Muon g-2 Theory
Initiative on the HVP uncertainty, see, e.g.,

B. Malaescu et al., https://indico.him.uni-
mainz.de/event/11/contributions/80/attachments/50/51/amuWorkshop_Correlations_Malaescu.pdf

M. Davier et al., Eur. Phys. J. C80 (2020) 241, arXiv:1908.00921
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Developments of LS for Averaging

Much work in HEP and elsewhere on application/extension of
least squares to the problem of averaging or meta-analysis, e.g.,

A. C. Aitken, On Least Squares and Linear Combinations of
Observations, Proc. Roy. Soc. Edinburgh 55 (1935) 42.

L. Lyons, D. Gibaut and P. Clifford, How to Combine Correlated
Estimates of a Single Physical Quantity, Nucl. Instr. Meth. A270
(1988) 110.

A. Valassi, Combining Correlated Measurements of Several
Different Physical Quantities, Nucl. Instr. Meth. A500 (2003) 391.

R. Nisius, On the combination of correlated estimates of a physics
observable, Eur. Phys. J. C74(2014) 3004.

R. DerSimonian and N. Laird, Meta-analysis in clinical trials,
Controlled Clinical Trials 7 (1986) 177-188.
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Single-measurement model

As a simplest example consider

y ~ Gauss(u, 6?),

1 1
v ~Gammala, ,3), o = 422 p= 4e2 52
1 2 /9.2 [
2y 1 2y _ —(y—p)= /204 | a—1 —pBv
L(p,0%) = f(y,v|p,07) \WE F(E‘f)t €
3
Test values of u with ¢, =—2 In A(u) with  A(p) = Ln, J,ﬂ(f))
L(ji,0%)
_ 1 2 (y — p)?
e (15 )i e
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Distribution of t,

From Wilks’ theorem, in the asymptotic limit we should
find ¢, ~ chi-squared(1).

Here “asymptotic limit” means all estimators ~Gauss, which
means ¢ — (0. For increasing ¢, clear deviations visible:

Lt

— x; pdf

||||I11|| |||||rl'| Ty ||||I11|| ||||I11|| T1

1D—Ellllllllllll""""'|
0 5 10 15 20 25

L
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Distribution of 7, (2)

For larger ¢, breakdown of asymptotics gets worse:

T IIII|T! T IIIIII! T IIIII|T| T III|'|T|| T IIIIII! LI

Values of ¢ ~ several tenths are relevant so we cannot in general
rely on asymptotics to get confidence intervals, p-values, etc.
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Bartlett corrections
r_ L "
R[]

such that the new statistic’s distribution is better approximated
by chi-squared for n, degrees of freedom (Bartlett, 1937).

One can modify ¢, defining ¢

For this example £[z,] = 1 + 3¢* + 2&* works well:

o |

25
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Bartlett corrections (2)

Good agreement for ¢ ~ several tenths out to Vt,' ~ several, i.e.,
good for significances of several sigma:

T Illllq T Illllq T IIIII|T| T IIIII|T| T IIII|T! LILI
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68.3% CL confidence interval for u

5 1
= 2
= — exact =
= 3
< 4 r ----- asymptotic g 08 +
g ®
s | Bartlett corrected S -
= g “““
d 8 06
=
o
8 04
— exact
02 -—-— asymptotic
--- Bartlett corrected
Og 02 0.4 0.6 0.8 1 05 55 h S s
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Example: average of two measurements

Approximate ("MINOS”) confidence interval based on

! e a .

InL'(p)=InL'(i) — Qa/2 with
= 12
5 — §=0 y,=10-81£1
=
o 10~ 0=1 _
§ s_o y2_1{}+ai1i1
£ .
c g =3
- o=4
o

. §=5

5 61
2
g ap

2_

00 02 04 06 0.8

G. Cowan / RHUL Physics

Qo = F?;?l(l — ‘:}5;“)

Increased discrepancy
between values to be

averaged gives larger

interval.

Interval length saturates
at ~level of absolute
discrepancy between
input values.

relative error

£ </ on sys. error
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Same with interval from p = a with
nuisance parameters profiled at i

-y
Ma

y,=10-8+1%1

—k
=
!

y2:1ﬂ+ai1i1

o
|

= R = = R = I = R =

(=]
|
[
N &= WM = O

half-length of 1-c confidence interval
P

Mo
|

............................................
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Coverage of intervals

Consider previous average of
two numbers but now generate

fori=1, 2 data values
y;~ Gauss(y, a,,;)
u; ~ Gauss(0, ,,;)
v; ~Gamma(o,; 1;)

0,;=0,;=1

1
(a

0.8

0.6

and look at the probability
that the interval covers the 04

true value of L.

Coverage stays reasonable

toe ~ 0.5, even not bad
for Profile Construction
outtoe~ 1.

G. Cowan / RHUL Physics

0.2

e o L % % oL % RS 8 R R AR R AR A NE R R AR R R A KR R RS R R AR KR AN R A R A REE N AR EE R AN K WA AEE R AEE N

--------------
-
~~~~~
-----------
...........

Nominal CL

—— Minos interval

------- Profile construction

0 0.2 0.4 0.6 0.8 1
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B

Student’s t average software

Software: stave.py
https://www.pp.rhul.ac.uk/~cowan/stat/exercises/stave/

The program stave.py implements the Gamma Variance Model
(GVM) for averaging N measurements.

For details see G. Cowan, EPJC (2019) 79:133.

In this version the model does not distinguish between statistical
and systematic errors.

Confidence interval for the mean u becomes sensitive to goodness-
of-fit (increases if data internally inconsistent).

Estimated mean less sensitive to outliers.

G. Cowan / RHUL Physics Manchester Bohr Seminar /13 Feb 2026 55



Least Squares vs Gamma Variance Model

Quadratic terms from Least Squares replaced by logarithmic ones:

g2 a2
(wi —0:)° (1—|—L2)1n [1+2e§('“’“ b:)

2 :
T 2¢; Vi

where
y; = measured value
v; = s/ = estimated variance

¢; = relative uncertainty on estimate of variance

Equivalent to replacing Gauss pdf for measurements by
Student’s #, number of degrees of freedom = 1/2¢/
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A quick look at stave.py

Set measured values, estimates of std. dev., errors on errors:

y = np.array([17.,19., 15., 3.]) # measured values

s = np.array([1.5, 1.5, 1.5, 1.5]) # estimates of std. dev

v =s5%%2 # estimates of variances

r = np.array([0.2, 0.2, 0.2, 0.2]) # relative errors on errors

log-likelihood:

class NeglLoglL:

def __init__(self,y,s, r):
self.setDataly, s, r)

def setData(self, y, s, r):
selfdata=y,s,r

def __call__(self, mu):
y, s, r =self.data
v=s**2
Inf=-0.5%(1. + 1./(2.%r**2))*np.log(1. + 2.*(r*(y-mu))**2/v)
return -np.sum(Inf)
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Example average with GVM

Suppose four measurements of the parameter pu.

Each reports an estimated standard dev. of s = 1.5 and
a “relative error on the error” ¢ = 0.2.

25
20 :
* Suggested exercise:
[ ' . . .
151 + Experiment with different
> numbers of measurements,
10 - different levels of internal
outlier consistency, different values
51 o measured data / for the std. dev. and error
{=16.21+0.99 + on error.
0

1 2 3 4
measurement number
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