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Outline 
0) Brief review of statistical tests and setting limits. 
1)  A measure of discovery sensitivity is often used to plan a future  
analysis, e.g., s/√b, gives approximate expected discovery  
significance (test of s = 0) when counting n ~ Poisson(s+b).  A  
measure of discovery significance is proposed that takes into  
account uncertainty in the background rate. 
 
2)  In many searches for new signal processes, estimates of 
rates of some background components often based on Monte Carlo 
with weighted events.  Some care (and assumptions) are required 
to assess the effect of the finite MC sample on the result of the test. 

3)  A few words on the jackknife and bootstrap. 

4)  A few words on Bayesian vs. Frequentist methods. 
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(Frequentist) statistical tests 
Consider test of a parameter µ, e.g., proportional to cross section. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Equivalently define a p-value pµ such that the critical region  
corresponds to pµ < α.  

Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Test statistics and p-values 
Often construct a test statistic, qµ, which reflects the level 
of agreement between the data and the hypothesized value µ. 

For examples of statistics based on the profile likelihood ratio, 
see, e.g., CCGV, EPJC 71 (2011) 1554;  arXiv:1007.1727. 

Usually define qµ such that higher values represent increasing  
incompatibility with the data, so that the p-value of µ is: 

Equivalent formulation of test:  reject µ if pµ < α. 

pdf of qµ assuming µ observed value of qµ 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval depends on the choice of the critical region of the test.  

Put critical region where data are likely to be under assumption of 
the relevant alternative to the µ that’s being tested. 

    Test µ = 0, alternative is µ > 0:  test for discovery. 

    Test µ =  µ0, alternative is µ = 0:  testing all µ0 gives upper limit. 
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p-value for discovery 
Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
specified µ	



maximize L	



The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 

For purposes of setting an upper limit on µ use 

where 

cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Example of a  p-value 
ATLAS, Phys. Lett. B 716 (2012) 1-29 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 

So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  
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I.  Discovery sensitivity for counting experiment with b known: 
 

 (a) 
 

 (b)  Profile likelihood  
                   ratio test & Asimov: 

II.  Discovery sensitivity with uncertainty in b, σb: 
 

 (a) 
  
 (b)  Profile likelihood ratio test & Asimov: 

Expected discovery significance for counting  
experiment with background uncertainty 
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 Counting experiment with known background 
Count a number of events n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Profile likelihood with b uncertain 

This is the well studied “on/off” problem:  Cranmer 2005; 
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,... 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 
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Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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Summary on discovery sensitivity 

For large b, all formulae OK. 

For small b, s/√b and s/√(b+σb
2) overestimate the significance. 

 Could be important in optimization of searches with 
 low background. 

Formula maybe also OK if model is not simple on/off experiment,  
e.g., several background control measurements (checking this). 

Simple formula for expected discovery significance based on 
profile likelihood ratio test and Asimov approximation: 
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Using MC events in a statistical test 
Prototype analysis – count n events where signal may be present: 

 n ~ Poisson(µs + b) 
s = expected events from nominal signal model (regard as known)  
b = expected background (nuisance parameter) 
µ = strength parameter (parameter of interest) 
Ideal – constrain background b with a data control measurement m, 
scale factor τ (assume known) relates control and search regions: 

 m ~ Poisson(τb) 

Reality – not always possible to construct data control sample, 
sometimes take prediction for b from MC. 
From a statistical perspective, can still regard number of MC 
events found as m ~ Poisson(τb) (really should use binomial,  
but here Poisson good approx.)  Scale factor is τ = LMC/Ldata. 
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MC events with weights 
But, some MC events come with an associated weight, either from 
generator directly or because of reweighting for efficiency, pile-up. 

 Outcome of experiment is:  n, m, w1,..., wm 

How to use this info to construct statistical test of µ? 

“Usual” (?) method is to construct an estimator for b: 
 

and include this with a least-squares constraint, e.g., the χ2 gets 
an additional term like 
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Case where m is small (or zero) 
Using least-squares like this assumes     ~ Gaussian, which is OK  
for sufficiently large m because of the Central Limit Theorem. 

But    may not be Gaussian distributed if e.g. 
 m is very small (or zero),  
 the distribution of weights has a long tail. 

Hypothetical example: 
 m  = 2, w1 = 0.1307, w2 = 0.0001605,    
      = 0.0007 ± 0.0030 
 n = 1 (!) 

Correct procedure is to treat m ~ Poisson (or binomial).  And if  
the events have weights, these constitute part of the measurement,  
and so we need to make an assumption about their distribution. 

b̂

b̂

b̂
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Constructing a statistical test of µ 
As an example, suppose we want to test the background-only 
hypothesis (µ=0) using the profile likelihood ratio statistic 
(see e.g. CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727), 

where 

From the observed value of q0,  
the p-value of the hypothesis is: 

So we need to know the distribution of the data (n, m, w1,..., wm), 
i.e., the likelihood, in two places: 

 1)  to define the likelihood ratio for the test statistic 
 2)  for f(q0|0) to get the p-value   
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Normal distribution of weights 
Suppose w ~ Gauss (ω, σw).  The full likelihood function is 

The log-likelihood can be written: 

Only depends on weights through: 
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Log-normal distribution for weights 
Depending on the nature/origin of the weights, we may know: 

 w(x) ≥ 0, 
 distribution of w could have a long tail. 

So w ~ log-normal could be a more realistic model. 

I.e, let l = ln w, then l ~ Gaussian(λ, σl), and the log-likelihood is 

where λ = E[l] and ω = E[w] = exp(λ + σl
2/2). 

Need to record n, m,  Σi ln wi and Σi ln2 wi. 
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Normal distribution for  b̂
For m > 0 we can define the estimator for b 

If we assume    ~ Gaussian, then the log-likelihood is  b̂

Important simplification:  L only depends on parameter of  
interest µ and single nuisance parameter b. 

Ordinarily would only use this Ansatz when Prob(m=0) negligible. 
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Toy weights for test of procedure 
Suppose we wanted to generate events according to 

Suppose we couldn’t do this, and only could generate x following  

and for each event we also obtain a weight 

In this case the weights follow: 
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Two sample MC data sets 

case 1:  
a = 5, ξ = 25 
m = 6 
Distribution of w narrow 

case 2:  
a = 5, ξ = 1 
m = 6 
Distribution of w broad 

Suppose n = 17, τ = 1, and  
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Testing µ = 0 using q0 with n = 17 

case 1:  
a = 5, ξ = 25 
m = 6 
Distribution of  
w is narrow 

If distribution of weights is narrow, then all methods result in 
a similar picture:  discovery significance Z ~ 2.3. 
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Testing µ = 0 using q0 with n = 17 (cont.) 

case 2:  
a = 5, ξ = 1 
m = 6 
Distribution of  
w is broad 

If there is a broad distribution of weights, then: 

1)   If true w ~ 1/w, then assuming w ~ normal gives too tight of 
     constraint on b and thus overestimates the discovery significance. 

2)   If test statistic is sensitive to tail of w distribution (i.e., based 
     on log-normal likelihood), then discovery significance reduced. 

Best option above would be to assume w ~ log-normal, both for 
definition of q0 and f(q0|0), hence Z = 0.863. 
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Case of m = 0 
If no MC events found (m = 0) then there is no information with  
which to estimate the variance of the weight distribution, so the 
method with    ~ Gaussian (b , σb) cannot be used. 

For both normal and log-normal distributions of the weights, 
the likelihood function becomes 

b̂

If mean weight ω is known (e.g., ω = 1), then the only nuisance 
 parameter is b.  Use as before profile likelihood ratio to test µ. 

If ω is not known, then maximizing lnL gives ω → ∞, no inference 
on µ possible. 

If upper bound on ω can be used, this gives conservative estimate 
of significance for test of µ = 0. 
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Case of m = 0, test of µ = 0 

Asymptotic approx. for test 
of µ = 0 (Z = √q0) results in: 

Example for n = 5, m = 0,  
ω = 1 
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Summary on weighted MC 
Treating MC data as “real” data, i.e., n ~ Poisson, incorporates  
the statistical error due to limited size of sample. 

Then no problem if zero MC events observed, no issue of how 
to deal with 0 ± 0 for background estimate. 

If the MC events have weights, then some assumption must be 
made about this distribution.   

 If large sample, Gaussian should be OK,  

 if sample small consider log-normal. 

See draft note for more info and also treatment of weights = ±1  
(e.g., MC@NLO). 

www.pp.rhul.ac.uk/~cowan/stat/notes/weights.pdf 



To estimate a parameter we have  
various tools such as maximum  
likelihood,  least squares, etc. 

Usually one also needs to know the variance (or the full sampling 
distribution) of the estimator – this can be more difficult.   

Often use asymptotic properties, e.g., sampling distribution of ML 
estimators becomes Gaussian in large sample limit; std. dev. from 
curvature of log-likelihood at maximum. 

The jackknife and bootstrap are examples of “resampling” methods 
used to estimate the sampling distribution of statistics.   

In HEP  we often do this implicitly by using Toy MC to determine  
sampling properties of statistics (e.g., Brazil plot for 1σ, 2σ bands  
of limits). 
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Jackknife, bootstrap, etc. 



Invented by Quenouille (1949) and Tukey (1958). 

Suppose data sample consists of n events: x = (x1,... xn). 

We have an estimator θ(x) for a parameter θ. 

Idea is to produce pseudo data samples x-i = (x1,..., xi-1, xi+1,... xn) 
by leaving out the ith event. 

Let θ-1 be the estimator obtained from the data sample x-i. 
Suppose the estimator has a nonzero bias:  

The jackknife estimator  
of the bias is 

ˆ 

G. Cowan  Orsay 2014 / Discussion on Statistics 47 

The Jackknife 

ˆ 

See, e.g., Notes on Jackknife and Bootstrap by G. J. Babu: 
www.iiap.res.in/astrostat/School10/LecFiles/ 
JBabu_JackknifeBootstrap_notes.pdf 
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The Bootstrap (Efron, 1979) 
Idea is to produce a set of  “bootstrapped” data samples 
of same size as the original (real) one by sampling from some  
distribution that approximates the true (unknown) one.   

By evaluating a statistic (such as an estimator for a parameter θ)  
with the bootstrapped-samples, properties of its sampling  
distribution (often its variance) can be estimated. 

If the data consist of n events, one way to produce the 
bootstrapped samples is to randomly select from the original  
sample n events with replacement (the non-parametric bootstrap). 

 That is, some events might get used multiple times, others 
 might not get used at all. 

In other cases could generate the bootstrapped samples from 
a parametric MC model, using parameter values estimated from 
real data in the MC (parametric bootstrap). 
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The Bootstrap (cont.) 
Call the data sample x = (x1,... xn), observed data are xobs,  

and the bootstrapped samples are x1*, x2*, ... 

Idea is to use the distribution of 

as an approximation for the distribution of 

In the first quantity everything is known from the observed data 
plus bootstrapped samples, so we can use its distribution to 
estimate bias, variance, etc. of the estimator θ. ˆ 
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Systematic uncertainties and nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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p-values in cases with nuisance parameters 
Suppose we have a statistic qθ that we use to test a hypothesized 
value of a parameter θ, such that the p-value of θ is 

But what values of ν to use for f (qθ|θ, ν)? 
Fundamentally we want to reject θ only if pθ < α for all ν. 

 → “exact” confidence interval 
Recall that for statistics based on the profile likelihood ratio, the 
distribution f (qθ|θ, ν) becomes independent of the nuisance 
parameters in the large-sample limit. 
But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered, even those strongly disfavoured by the data (resulting 
interval for θ “overcovers”). 
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Profile construction (“hybrid resampling”) 

Approximate procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ: 

“double hat” notation means 
value of parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (!, ˆ̂"(!)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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“Hybrid frequentist-Bayesian” method 

Alternatively, suppose uncertainty in ν is characterized by 
a Bayesian prior π(ν). 

Can use the  marginal likelihood to model the data:  

This does not represent what the data distribution would 
be if we “really” repeated the experiment, since then ν would 
not change. 

But the procedure has the desired effect.  The marginal likelihood 
effectively builds the uncertainty due to ν into the model. 

Use this now to compute (frequentist) p-values → the model  
being tested is in effect a weighted average of models. 
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Example of treatment of nuisance 
parameters:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ×       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than if all values independent . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than if points were independent. 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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Bayesian model selection (‘discovery’) 

no Higgs 

Higgs 

The probability of hypothesis H0 relative to its complementary 
alternative H1 is often given by the posterior odds: 

Bayes factor B01 prior odds 

The Bayes factor is regarded as measuring the weight of  
evidence of the data in support of H0 over H1. 

Interchangeably use B10 = 1/B01 
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Assessing Bayes factors 
One can use the Bayes factor much like a p-value (or Z value). 

The Jeffreys scale, analogous to HEP's 5σ rule: 
 
B10   Evidence against H0 
-------------------------------------------- 
1 to 3   Not worth more than a bare mention 
3 to 20  Positive 
20 to 150  Strong 
> 150   Very strong 

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773. 
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Rewriting the Bayes factor 
Suppose we have models Hi, i = 0, 1, ..., 

each with a likelihood 

and a prior pdf for its internal parameters  

so that the full prior is 

where                         is the overall prior probability for Hi.  

The Bayes factor comparing Hi and Hj can be written  
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Bayes factors independent of P(Hi) 

For Bij we need the posterior probabilities marginalized over 
all of the internal parameters of the models: 

Use Bayes 
theorem 

So therefore the Bayes factor is 

The prior probabilities pi = P(Hi) cancel. 

Ratio of  marginal 
likelihoods 
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Numerical determination of Bayes factors 
Both numerator and denominator of Bij are of the form 

‘marginal likelihood’ 

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC). 

 Harmonic Mean (and improvements) 
 Importance sampling 
 Parallel tempering (~thermodynamic integration) 
 Nested Samplying (MultiNest), ... 
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Priors for Bayes factors 
Note that for Bayes factors (unlike Bayesian limits), the prior  
cannot be improper.  If it is, the posterior is only defined up to an 
arbitrary constant, and so the Bayes factor is ill defined  

 Possible exception allowed if both models contain same 
 improper prior;  but having same parameter name (or Greek 
 letter) in both models does not fully justify this step. 

If improper prior is made proper e.g. by a cut-off, the Bayes factor 
will retain a dependence on this cut-off. 

In general for Bayes factors, all priors must reflect “meaningful” 
degrees of uncertainty about the parameters.  
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Harmonic mean estimator 
E.g., consider only one model and write Bayes theorem as: 

π(θ) is normalized to unity so integrate both sides, 

Therefore sample θ from the posterior via MCMC and estimate m  
with one over the average of 1/L (the harmonic mean of L). 

posterior 
expectation 
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Improvements to harmonic mean estimator 
The harmonic mean estimator is numerically very unstable; 
formally infinite variance (!).  Gelfand & Dey propose variant: 

Rearrange Bayes thm; multiply  
both sides by arbitrary pdf f(θ): 

Integrate over θ : 

Improved convergence if tails of f(θ) fall off faster than L(x|θ)π(θ) 

Note harmonic mean estimator is special case f(θ) = π(θ). 
. 
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Importance sampling 
Need pdf f(θ) which we can evaluate at arbitrary θ and also 
sample with MC. 

The marginal likelihood can be written 

Best convergence when f(θ) approximates shape of L(x|θ)π(θ). 

Use for f(θ) e.g. multivariate Gaussian with mean and covariance 
estimated from posterior (e.g. with MINUIT). 
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