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Outline 

Review of parameter estimation (pedagogical) 
 
Some examples of averaging measurements 
 
Averaging with errors on errors 
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Distribution, likelihood, model 
Suppose the outcome of a measurement is x. (e.g., a number of  
events, a histogram, or some larger set of numbers). 

The probability density (or mass) function or ‘distribution’ of x, 
which may depend on parameters θ, is: 

P(x|θ)       (Independent variable is x; θ is a constant.) 

If we evaluate P(x|θ) with the observed data and regard it as a 
function of the parameter(s), then this is the likelihood: 

We will use the term ‘model’ to refer to the full function P(x|θ) 
that contains the dependence both on x and θ. 

L(θ) = P(x|θ)         (Data x fixed; treat L as function of θ.) 
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Maximum likelihood 
The most important frequentist method for 
constructing estimators is to take the value of  
the parameter(s) that maximize the likelihood: 

The resulting estimators are functions of  
the data and thus characterized by a sampling  
distribution with a given (co)variance: 

In general they may have a nonzero bias: 

Under conditions usually satisfied in practice, bias of ML estimators 
is zero in the large sample limit, and the variance is as small as 
possible for unbiased estimators.   

ML estimator may not in some cases be regarded as the optimal  
trade-off between these criteria (cf. regularized unfolding). 
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Example:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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The Bayesian approach 

In Bayesian statistics we can associate a probability with 
a hypothesis, e.g., a parameter value θ. 

        Interpret probability of θ as ‘degree of belief’ (subjective). 

Need to start with ‘prior pdf’ π(θ), this reflects degree  
of belief about θ before doing the experiment. 

        Our experiment has data x, → likelihood function L(x|θ). 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Posterior pdf  p(θ | x) contains all our knowledge about θ. 

10 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ✕       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than if all values independent . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than if points were independent. 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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A more general fit (symbolic) 
Given measurements:  

and (usually) covariances: 

Predicted value: 

control variable parameters bias 

Often take: 

Minimize 

Equivalent to maximizing L(θ) ~ e-χ2/2, i.e., least squares same  
as maximum likelihood using a Gaussian likelihood function.  

expectation value 
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Its Bayesian equivalent 

and use Bayes’ theorem: 

To get desired probability for θ, integrate (marginalize) over b: 

→ Posterior is Gaussian with mode same as least squares estimator,  
     σθ  same as from χ2 = χ2

min + 1.  (Back where we started!) 

Take 

Joint probability 
for all parameters 
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The error on the error 
Some systematic errors are well determined 

 Error from finite Monte Carlo sample 
 
Some are less obvious 

 Do analysis in n ‘equally valid’ ways and 
 extract systematic error from ‘spread’ in results. 

 
Some are educated guesses 

 Guess possible size of missing terms in perturbation series;  

 vary renormalization scale 

Can we incorporate the ‘error on the error’? 

 (cf. G. D’Agostini 1999; Dose & von der Linden 1999) 
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Motivating a non-Gaussian prior πb(b) 
Suppose now the experiment is characterized by 

where si is an (unreported) factor by which the systematic error is  
over/under-estimated. 

Assume correct error for a Gaussian πb(b) would be siσi
sys, so 

Width of σs(si) reflects 
‘error on the error’. 
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Error-on-error function πs(s) 
A simple unimodal probability density for 0 < s < 1 with  
adjustable mean and variance is the Gamma distribution: 

Want e.g. expectation value  
of 1 and adjustable standard  
Deviation σs , i.e.,  

mean = b/a 
variance = b/a2 

In fact if we took πs (s) ~ inverse Gamma, we could integrate πb(b) 
in closed form (cf. D’Agostini, Dose, von Linden).  But Gamma 
seems more natural & numerical treatment not too painful. 

s 
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Prior for bias πb(b) now has longer tails 

Gaussian (σs = 0)      P(|b| > 4σsys)  =  6.3 × 10-5 

σs = 0.5                    P(|b| > 4σsys)  =  0.65% 

b 
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A simple test 
Suppose a fit effectively averages four measurements. 

 Take σsys = σstat = 0.1, uncorrelated. 

Case #1: data appear compatible Posterior p(µ|y): 

Usually summarize posterior p(µ|y)  
with mode and standard deviation: 

experiment 

m
ea

su
re

m
en

t

µ
p(

µ|
y)
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Simple test with inconsistent data 
Case #2: there is an outlier 

→ Bayesian fit less sensitive to outlier. 

Posterior p(µ|y): 

experiment 

m
ea

su
re

m
en

t

µ

p(
µ|

y)

(See also D'Agostini 1999; Dose & von der Linden 1999) 
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Goodness-of-fit vs. size of error 
In LS fit, value of minimized χ2 does not affect size 
of error on fitted parameter. 
 
In Bayesian analysis with non-Gaussian prior for systematics, 
a high χ2 corresponds to a larger error (and vice versa). 

2000 repetitions of 
experiment, σs = 0.5, 
here no actual bias. 

χ2 

σµ from least squares 

post- 
erior
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Frequentist errors on errors 
Despite the nice features of the Bayesian treatment, it has some 
important drawbacks: 

 Bayesian gamma-distributed error-on-error requires numerical 
 integration.  (Inverse-gamma prior for s gives Student’s t, 
 but this allows very large errors). 

 The Particle Physics community does almost every analysis 
 within a frequentist framework – best if one can include 
 errors on errors without changing entire paradigm. 

Recently I have been studying the frequentist treatment of errors-
on-errors; outcome is very similar to the Bayesian approach (work 
in progress). 

So first review some properties of frequentist averages... 



G. Cowan  23 Mar 2018 / Disussion on averages 28 

ML example 

Maximizing the likelihood is  
equivalent to minimizing  

Suppose we measure uncorrelated yi ~ Gauss(µ, σyi
2), i = 1,..., N 

so that the likelihood is 

This gives a linear unbiased estimator with minimum variance 
(i.e., equivalent to BLUE): 
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ML example with systematics 
Suppose now yi ~ Gauss(µ + bi, σi

2), and we have estimates of bias 
parameter bi, ui ~ Gauss(bi, σu,i

2), so that the likelihood becomes 

After profiling over the nuisance parameters b, one obtains the 
same result as before but with 

So again this is the same as BLUE, extended to use addition of 
the statistical and systematic errors in quadrature. 
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Example extension:  PDG scale factor 

Suppose we do not want to take the quoted errors as 
known constants.   Scale the variances by a factor ϕ, 

The likelihood  
function becomes 

The estimator for µ is the same as before; for ϕ ML gives  

which has a bias;  is unbiased. 

The variance of µ is inflated by ϕ: ^ 
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Frequentist errors on errors 
Suppose we want to treat the systematic errors as uncertain, 
so let the σu,i be adjustable nuisance parameters. 

Suppose we have estimates si for σu,i  or equivalently vi = si
2, is an 

estimate of σu,i
2. 

Model the vi as independent and gamma distributed: 

We can set α and β so that they give e.g. a desired relative 
uncertainty r  in σu. 
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Gamma model for estimates of variance 
Suppose the estimated variance v was obtained as the sample 
variance from n observations of a Gaussian distributed bias  
estimate u. 

In this case one can show v is gamma distributed with  

We can relate α and β to the relative uncertainty r in the systematic 
uncertainty as reflected by the standard deviation of the sampling 
distribution of s,  σs 
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Full likelihood with errors on errors 

Treated like data:   y1,...,yN        (the real measurements) 
    u1,...,uN        (estimates of biases) 
    v1,...,vN        (estimates of variances 
              of estimates of biases) 

Parameters:   µ         (parameter of interest) 
   b1,...,bN        (bias parameters) 
   σu1,...,  σuN  (sys. errors = std. dev. of 
      of bias estimates) 



G. Cowan  23 Mar 2018 / Disussion on averages 34 

Full log-likelihood with errors on errors 
Setting the parameters of the gamma distributions in terms 
of the relative uncertainty in the systematic errors ri and 
the systematic errors themselves σui,  

which gives the log-likelihood   
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Toy study with errors on errors 

Increased discrepancy 
between values to be  
averaged gives larger 
interval. 

Interval length saturates 
at ~level of absolute  
discrepancy between  
input values. 

MINOS interval (= approx. confidence interval) based on 

with 

relative error  
on sys. error 



G. Cowan  23 Mar 2018 / Disussion on averages 36 

Goodness of fit with errors on errors 
Because we now treat the σui as adjustable parameters, -2lnL is  
no longer a sum of squares; “usual” χ2 not usable for g.o.f. 

To assess the goodness of fit, one can define a statistic based on 
the profile likelihood ratio 

For q in the numerator one assumes a single value of mu for 
all measurements (the model being tested). 

The denominator is the “saturated model”, i.e., an adjustable 
µi for each measurement, i.e., µ = (µ1,..., µN). 

Asymptotically from Wilks’ theorem q ~ chi-square(N-1) 



G. Cowan  23 Mar 2018 / Disussion on averages 37 

Goodness of fit with errors on errors  
(N = 2,3) 

Asymptotic distribution works well with r = 0.2 
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Goodness of fit with errors on errors  
(N = 4,5) 

Asymptotic distribution works well with r = 0.2 
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Goodness of fit with errors on errors  
(N = 6,7) 

Asymptotic distribution works well with r = 0.2 
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Goodness-of-fit with large errrors on errors 
Asymptotic distribution starts to break for large r 

r = 0.4 r = 0.6 
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Connection between goodness-of-fit and size 
of confidence interval 

Similar to Bayesian case, the 
length of the confidence 
interval increases if the 
goodness-of-fit is bad (high q), 
but only if one includes 
enough error-on-error. 
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Further work 

Next:   

Study sensitivity of average to outliers with errors-on-errors 

Extend to analyses beyond averages, e.g., 

 µ → µ = (µ1,..., µN) = µ(θ) 

Still a number of software issues to overcome, e.g., problems 
with fit convergence, determining MINOS interval (thanks to 
Lorenzo Moneta for help with this) 
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Extra slides 
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Using LS to combine measurements 
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Combining correlated measurements with LS 
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Example: averaging two correlated measurements 
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Negative weights in LS average 
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Example of “correlated systematics” 
Suppose we carry out two independent measurements of the  
length of an object using two rulers with diferent thermal 
expansion properties. 

Suppose the temperature is not known exactly but must 
be measured (but lengths measured together so T same for both), 

and the (uncorrected) length measurements are modeled as 

The expectation value of the measured length Li (i = 1, 2)  
is related to true length λ at a reference temperature τ0 by 
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Two rulers (2) 
The model thus treats the measurements T, L1, L2 as uncorrelated 
with standard deviations σT, σ1, σ2, respectively: 

Alternatively we could correct each raw measurement:  

which introduces a correlation between y1, y2 and T 

But the likelihood function (multivariate Gauss in T, y1, y2)  
is the same function of τ and λ as before. 

     Language of y1, y2:  temperature gives correlated systematic. 
     Language of L1, L2:  temperature gives “coherent” systematic. 
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Two rulers (3) 

Outcome has some surprises: 

Estimate of λ does not lie 
between y1 and y2. 
 
Stat. error on new estimate 
of temperature substantially 
smaller than initial σT. 
 
These are features, not bugs, 
that result from our model 
assumptions. 
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Two rulers (4) 
We may re-examine the assumptions of our model and  
conclude that, say, the parameters α1, α2 and τ0 were also 
uncertain. 

We may treat their nominal values as measurements (need a model; 
Gaussian?) and regard α1, α2 and τ0  as as nuisance parameters. 
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Two rulers (5) 
The outcome changes; some surprises may be “reduced”. 
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Non-Gaussian likelihoods 
Tails of Gaussian fall of very quickly; not always most realistic 
model esp. for systematics.  Can try e.g. Student’s t, 

ν = 1 gives Cauchy, 

ν large gives Gaussian. 

Can either fix ν or 
constrain like other  
nuisance parameters. 

ML no longer equivalent 
to least-squares, BLUE. 
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Gamma distribution for sys. errors 
First attempt to treat estimates of sys. errors as log-normal 
distributed has long tail towards large errors; maybe more realistic 
to use gamma distribution: 

x 

(here k = α, θ = 1/β) 

Take s ~ Gamma(α, β) as “measurement” of sys. error σu 

with relative unc. in sys. error r,   α = 1/r2,   β= α /σu. 


