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Outline

Most material here is taken from the University of London course:

http://www.pp.rhul.ac.uk/~cowan/stat_course.html

Lecture 1: Introduction, Maximum Likelihood

Lecture 2:  Least squares, Bayesian approach, unfolding
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Parameter Estimation 1-1

• Introduction to (frequentist) parameter estimation

• The method of Maximum Likelihood

• MLE for exponential distribution
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Frequentist parameter estimation
The parameters of a pdf are any constants that characterize it, 

r.v.

Suppose we have a sample of observed values: x = (x1, ..., xn)

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.

i.e., θ indexes a
set of hypotheses.
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Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

biasedlarge
variance

best

We want small (or zero) bias (systematic error):

→ average of repeated measurements should tend to true value.

And we want a small variance (statistical error):
→ small bias & variance are in general conflicting criteria
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An estimator for the mean (expectation value)

Parameter:

Estimator:

We find:

(‘sample mean’)

Suppose we have a sample of n independent values x1,...,xn.
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An estimator for the variance

Parameter:

Estimator:

(factor of n-1 makes this so)

(‘sample
variance’)

We find:

where
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The likelihood function
Suppose the entire result of an experiment (set of measurements)
is a collection of numbers x, and suppose the joint pdf for
the data x is a function that depends on a set of parameters θ:

Now evaluate this function with the data obtained and
regard it as a function of the parameter(s).  This is the 
likelihood function:

(x constant)
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The likelihood function for i.i.d.*. data

Consider n independent observations of x:  x1, ..., xn,  where 
x follows f(x; θ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed
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Maximum Likelihood Estimators (MLEs)
We define the maximum likelihood estimators or MLEs to be 
the parameter values for which the likelihood is maximum.

Maximizing L equivalent
to maximizing log L

Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but 
in practice they’re very good).
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MLE example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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MLE example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
generate 50  values
using τ = 1:

We find the ML estimate:
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MLE example:  parameter of exponential pdf (3)

For the MLE

For the exponential distribution one has for mean, variance:

we therefore find

→

→
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Large-sample (asymptotic) properties of MLEs
Suppose we have an i.i.d. data sample of size n:  x1,...,xn
In the large-sample (or “asymptotic”) limit (n → ∞) and assuming 
regularity conditions one can show that the likelihood and MLE 
have several important properties.

The regularity conditions include:  
• the boundaries of the data space cannot depend on the 

parameter;
• the parameter cannot be on the edge of the parameter space;
• lnL(θ) must be differentiable;
• the only solution to 𝜕lnL/𝜕θ = 0 is θ.^

In the slides immediately following the properties are shown 
without proof for a single parameter; the corresponding 
properties hold also for the multiparameter case, θ = (θ1,..., θm).
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log-likelihood becomes quadratic

The likelihood function becomes Gaussian in shape, i.e. 
the log-likelihood becomes quadratic (parabolic).

The MLE becomes increasingly precise as the (log)-likelihood 
becomes more tightly concentrated about its peak,
but L(θ) = P(x|θ) is the probability for x, not a pdf for θ.
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The MLE converges to the true parameter value

In the large-sample limit, the MLE converges in probability
to the true parameter value.

That is, for any ε > 0, 

The MLE is said to be consistent.
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MLE is asymptotically unbiased
In general the MLE can be biased, but in the large-sample limit, 
this bias goes to zero:

(Recall for the exponential parameter we found the bias was
identically zero regardless of the sample size n.)
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The information inequality
The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only MLE).  For a single parameter:

= MVB    (Minimum 
Variance Bound)

Proof in Exercise 6.6 of SDA, http://www.pp.rhul.ac.uk/~cowan/sda/prob/prob_6.pdf 

“Efficiency” of an estimator = MVB / actual variance.

An estimator whose variance equals the MVB is said to be efficient.  

where 
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The MLE’s variance approaches the MVB

In the large-sample limit, the variance of the MLE approaches 
the minimum-variance bound, i.e., the information inequality 
becomes an equality (and bias goes to zero):

The MLE is said to be asymptotically efficient.
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The MLE’s distribution becomes Gaussian
In the large-sample limit, the pdf of the MLE becomes Gaussian,  

For example, exponential MLE 
with sample size n = 100.

Note that for exponential, MLE 
is arithmetic average, so 
Gaussian MLE seen to stem 
from Central Limit Theorem.

where is the minimum variance bound (note bias is zero).
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Distribution of MLE of exponential parameter
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Parameter Estimation 1-2

• Finding the variance of MLEs

• Information inequality for multiple parameters
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, using e.g. the estimator’s standard deviation, or 
(co)variance. 

It is usually not possible to do this with an exact calculation.

Another way is to simulate the 
entire experiment many times with 
a Monte Carlo program (use ML 
estimate for MC).

For exponential example (n=50), 
from sample variance of estimates 
we find:
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Variance of estimators from information inequality
Recall the information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only MLE):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:

MVB
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MVB for MLE of exponential parameter

We found for the exponential parameter the MLE 

and we showed b = 0, hence 𝜕b/𝜕τ = 0.

Find 

We find

and since E[ti] = τ for all i,

and therefore So here the MLE is efficient..

,
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Variance of estimators: graphical method
Expand ln L (θ) about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

→  to get , change θ away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Parameter Estimation 1-3

• Information inequality for multiple parameters

• Numerical example of 2-D MLE

• The ln L = ln Lmax – ½ contour

• MLE for function of a parameter

• Relation between MLE and Bayesian estimator
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Information inequality for N parameters
Suppose we have estimated N parameters θ = (θ1,...,θN)   

The Fisher information matrix is

The information inequality states that the matrix

and the covariance matrix of estimators θ is ^

is positive semi-definite:  

zTMz ≥ 0 for all z ≠ 0, diagonal elements ≥ 0  
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Information inequality for N parameters (2)

In practice the inequality is ~always used in the large-sample limit:
bias → 0
inequality → equality, i.e, M = 0, and therefore V = I-1

That is, 

This can be estimated from data using

Find the matrix V-1 numerically (or with automatic differentiation),
then invert to get the covariance matrix of the estimators
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Example of ML with 2 parameters

Consider a scattering angle distribution with x = cos θ,

or if xmin < x < xmax, need to normalize so that 

Example:  α = 0.5, β = 0.5, xmin = -0.95, xmax = 0.95, 
generate n = 2000 events with Monte Carlo.

need to find maximum
numerically
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Example of ML with 2 parameters:  fit result
Finding maximum of ln L(α, β) numerically gives

N.B.  No binning of data for fit,
but can compare to histogram for
goodness-of-fit (e.g. ‘visual’ or χ2). 

(Co)variances from

=   correlation coefficient
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Two-parameter fit:  MC study
Repeat ML fit with 500 experiments, all with n = 2000 events:

Estimates average to ~true values;
(Co)variances close to previous estimates;
marginal pdfs approximately Gaussian.
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Multiparameter graphical method for variances

Expand lnL(θ) to 2nd order about MLE:

relate to covariance matrix of 
MLEs using information 
(in)equality.

ln Lmax zero

Result: 

So the surface corresponds to

,  which is the equation of a (hyper-) ellipse.
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Multiparameter graphical method (2)

Distance from MLE to tangent planes gives standard deviations.
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The ln Lmax - 1/2 contour for two parameters

For large n, ln L takes on quadratic form near maximum:

The contour is an ellipse:
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(Co)variances from ln L contour

→ Tangent lines to contours give standard deviations.

→ Angle of ellipse φ related to correlation:

The α, β plane for the first
MC data set
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Functions of maximum-likelihood estimators
Suppose likelihood has a parameter θ.

Define a new parameter α given by function α = a(θ).

What is the MLE of α?

For now suppose a(θ) has a unique inverse, so θ = a-1(α).

The likelihood is L(θ) = L(a-1(α)).

The maximum of the likelihood is Lmax = L(θ).

So to maximize L, find α ≡ α such that 

^

^

MLE of a function is the function of the MLE.  

Still works when function is not one-to-one.  Very useful result.
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Functions of MLEs: exponential example

Suppose we had written the exponential pdf as
i.e., we use λ = 1/τ.  What is the MLE estimator for λ?

For the decay constant we have

Caveat:   is biased, even though is unbiased.

(bias →0 for n →∞)Can show

In general MLE for a function of an unbiased estimator stays 
unbiased only for a linear function.
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Relationship between ML and Bayesian estimators

Recall the Bayesian approach:

Both θ and x are random variables.

Use subjective probability for hypotheses (θ);

before experiment, knowledge summarized by prior pdf π(θ);

use Bayes’ theorem to update prior in light of data:

Posterior pdf (conditional pdf for θ given x)
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ML and Bayesian estimators (2)
Purist Bayesian:  p(θ |x) contains all knowledge about θ.

Pragmatist Bayesian:  p(θ |x) could be a complicated function,

→ summarize using an estimator 

Take mode of p(θ |x),  (could also use e.g. expectation value)

What do we use for π(θ)?  
No golden rule (subjective!), 
often represent ‘prior ignorance’ 
by π(θ) = constant, in which case
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ML and Bayesian estimators (3)

Note πθ(θ) = const. cannot be normalized – “improper prior”.

Can be allowed for some problems; prior always appears multiplied
by likelihood, so product L(θ)πθ(θ) can result in normalizable
posterior probability.

But... we could have used a different parameter, e.g., λ= 1/θ,
and if prior πθ(θ) is constant, then πλ(λ) is not: 

‘Complete prior ignorance’ 
is not well defined.

Maybe we know say we nothing about λ, so take πλ(λ) = const.

Then
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Priors from formal rules 
Because of difficulties in encoding a vague degree of belief
in a prior, one often attempts to derive the prior from formal rules,
e.g., to satisfy certain invariance principles or to provide maximum
information gain for a certain set of measurements.

Often called “objective priors” 
Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent
possible extreme cases).   

In a Subjective Bayesian analysis, using  objective priors can be an 
important part of the sensitivity analysis.
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Priors from formal rules (cont.) 
In Objective Bayesian analysis, can use the intervals in a
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce
an interval with certain coverage properties.  For a review see:

Formal priors have not been widely used in HEP, but there is
recent interest in this direction; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high
energy physics, Phys. Rev. D 82:034002 (2010); arxiv:1002.1111
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Jeffreys’ prior
According to Jeffreys’ rule, take prior according to

where

is the Fisher information matrix.

One can show that this leads to inference that is invariant under
a transformation of parameters.

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson 
mean μ it is proportional to 1/√μ. 
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“Invariance of inference” with Jeffreys’ prior
Suppose we have a parameter θ, to which we assign a prior πθ(θ).

An experiment gives data x, modeled by L(θ) = P(x|θ).

Bayes’ theorem then tells us the posterior for θ:

Now consider a function η(θ), and we want the posterior
P(η|x).

This must follow from the usual rules of transformation of 
random variables:   
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“Invariance of inference” with Jeffreys’ prior (2)
Alternatively, we could have just starting with η as the parameter
in our model, and written down a prior pdf πη(η).

Using it, we express the likelihood as L(η) = P(x|η) and write Bayes’ 
theorem as

If the priors really express our degree of belief, then they must 
be related by the usual laws of probability πη(η) = πθ(θ(η)) |dθ/dη|,
and in this way the two approaches lead to the same result.

But if we choose the priors according to “formal rules”, then this is
not guaranteed.  For the Jeffrey’s prior, however, it does work!  

Using πθ(θ) ∝√I(θ) and transforming to find P(η|x) leads to 
the same as using πη(η) ∝√I(η) directly with Bayes’ theorem.
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Jeffreys’ prior for Poisson mean

Suppose n ~ Poisson(μ).  To find the Jeffreys’ prior for μ,

So e.g. for μ = s + b, this means the prior π(s) ~ 1/√(s + b),  which 
depends on b. But this is not designed as a degree of belief about s.
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Posterior pdf for Poisson mean
From Bayes’ theorem, 

Flat, π(μ) = const.

Jeffreys, π(μ) ~ 1/√μ

In both cases, posterior is special 
case of gamma distribution.

mode = n

mode = n – ½ 
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Parameter Estimation 1
Extra Slides

• Extended maximum likelihood

• Maximum likelihood with a histogram of data

• Relationship between MLE and Bayesian estimator

• Further examples
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Extended ML
We observe n independent values of x ~ f(x;θ).  

Suppose we regard n not as fixed, but as a Poisson r.v., mean ν.

Result of experiment defined as: n, x1, ..., xn.

P(n,x) = P(n)P(x|n), so the (extended) likelihood function is:

Suppose theory gives ν = ν(θ), then the log-likelihood is 

where C represents terms not depending on θ.
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Extended ML (2)

Extended MLE uses information both from the number 
of events n as well as the observed values of x.

→ smaller errors for        (compared to using x alone).

Example:  expected number of events 
where the total cross section σ(θ) is predicted as a function of
the parameters of a theory, as is the distribution of a variable x. 

If ν does not depend on θ but remains a free parameter,
extended ML gives: 
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ML with binned data

Often put data into a histogram:

Hypothesis specifies where

If we model the data as multinomial (ntot constant),  

then the log-likelihood function is:
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Example with binned data
Previous example with exponential, now put data into histogram:

Limit of zero bin width → usual unbinned MLE.

If ni treated as Poisson, we get extended log-likelihood:

Binning results in loss of 
information, increased std. dev. 
of MLE.
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MLE for number of taxis

The number plate of taxis in 
every canton in Switzerland 
ends with a number N from 1 
to Ntot, where Ntot is the total 
number of taxis.

Model the probability for observing plate number N with
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MLE for Ntot
Suppose you observe one taxi at random with plate number N.

For better estimators, see similar problem with tanks in WW2:  
https://en.wikipedia.org/wiki/German_tank_problem

E.g. the minimum-variance unbiased estimator is:

The likelihood function is

which is maximized for

The expectation value and bias of the MLE are
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Cheap estimator for mass of W boson

The Particle Physics community has spent huge sums trying to
estimate the mass of the W boson with the smallest possible
statistical and systematic uncertainty.

Here is an estimator with zero statistical uncertainty.  And it’s free! 

Here is its sampling distribution:

Does this violate the information
inequality?
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Cheap estimator for mass of W boson (2)

Note current best estimate of MW is 
80.379±0.012 GeV, so the numerical
value of the bias may be fairly small.

This estimator’s bias is

So the information inequality is still satisfied.

But we have and so 
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Extended ML example
Consider two types of events (e.g., signal and background) each 
of which predict a given pdf for the variable x:  fs(x) and fb(x).

We observe a mixture of the two event types, signal fraction = θ, 
expected total number = ν, observed total number = n.

Let goal is to estimate μs, μb.

→
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Extended ML example (2)

Maximize log-likelihood in 
terms of μs and μb:

Monte Carlo example
with combination of
exponential and Gaussian:

Here errors reflect total Poisson
fluctuation as well as that in 
proportion of signal/background.
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Example of MLE:  parameters of Gaussian pdf
Consider independent x1, ..., xn,  with xi ~ Gauss(μ, σ2)

The log-likelihood function is
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Example of ML:  parameters of Gaussian pdf (2)
Set derivatives with respect to μ, σ2 to zero and solve,

We already know that the estimator for μ is unbiased.

But we find, however, so the MLE for

σ2 has a bias, but b → 0 for n → ∞.  Recall, however, that

is an unbiased estimator for σ2.  Usually not important whether 
one uses s2 or the MLE to estimate σ2.
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Example of ML:  parameters of Gaussian pdf (3)

Use 2nd derivatives of lnL to find covariance.  
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Example of ML:  parameters of Gaussian pdf (4)

So the Fisher information matrix is

Invert to find covariance matrix

That is, 

From error prop., 
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Upper limit for Poisson mean

Flat prior:

Jeffreys prior:

= 7.75

= 7.03

where P-1 is the inverse of the normalized lower incomplete 
gamma function (see scipy.special)

To find upper limit at CL = 1-α, solve

n=3,
CL=0.95


