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Outline

For some slides/links with exercises and code you can see:

https://www.pp.rhul.ac.uk/~cowan/stat/exercises/cowan_stat_exercises.pdf

https://www.pp.rhul.ac.uk/~cowan/stat/exercises/cowan_stat_exercises_full.pdf

Most material here is taken from the University of London course:
  https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Lecture 1: IntroducFon, Maximum Likelihood

Lecture 2:  Least squares, Bayesian approach, unfolding



3G. Cowan / RHUL Physics INFN 2024, Paestum / Parameter EsBmaBon 2

Parameter Es@ma@on 2-1

• Nuisance parameters, systemaFc uncertainFes

• From Maximum LIkelihood to Least Squares

• Bayesian parameter esFmaFon

• MarginalizaFon of posterior pdf

• Markov Chain Monte Carlo
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Systematic uncertainties and nuisance parameters
In general, our model of the data is not perfect:

x 

P 
(x

|θ
)

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter ↔ systemaFc uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensiFvity of analysis
to the parameter of interest (e.g., increases variance of esFmate).
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Example:  fi5ng a straight line

Data:

Model: yi independent and all follow yi  ~ Gauss(μ(xi ), σi )

 

assume xi and σi known.

Goal:  esFmate θ0 

Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)
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Maximum likelihood fit with Gaussian data

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)
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θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     

to find 
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CorrelaFon between

             causes errors

to increase.

Standard deviaFons from

tangent lines to contour

ML (or LS) fit of θ0 and θ1
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The informaFon on θ1
improves accuracy of

If we have a measurement t1 ~ Gauss (θ1, σt1)
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Reminder of Bayesian approach
In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value θ.

        Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

        Our experiment has data x, → likelihood L(x|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf  p(θ|x) contains all our knowledge about θ.
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Bayesian approach:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 
We need to associate prior probabilities with θ0 and θ1, e.g.,

Likelihood for control
measurement t1

← ‘non-informative’, in any
case much broader than L(θ0)

Ur = “primordial”
         prior 

← suppose knowledge of θ0 has 
no influence on knowledge of θ1

prior a^er t1,
before y
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Bayesian example:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

Putting the ingredients into Bayes’ theorem gives:

posterior    ∝                  likelihood         ✕       prior

Note here the likelihood only reflects the measurements y.

The informaFon from the control measurement t1 has been put 
into the prior for θ1.

We would get the same result using the likelihood P(y,t|θ0,θ1) and 
the constant  “Ur-prior” for θ1.
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Marginalizing the posterior pdf

For this example, numbers come out same as in frequenFst 
approach, but interpretaFon different.  

We then integrate (marginalize)  p(θ0, θ1 | y) to find p(θ0  | y):

In this example we can do the integral (rare).  We find

(same as for MLE)
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Marginalization with MCMC
Bayesian computaFons involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:
 cannot use for many applications, e.g., detector MC;
 effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional θ but look only at 
distribution of parameters of interest. 
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MCMC basics:  Metropolis-HasJngs algorithm
Goal:  given an n-dimensional pdf p(θ), generate a sequence of 
points θ1 , θ2 , θ3 ,... 

1)  Start at some point 

2)  Generate  

Proposal density q(θ; θ0 )
e.g. Gaussian centred
about θ0

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-HasJngs (conJnued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

SFll works if p(θ) is known only as a proporFonality, which is 
usually what we have from Bayes’ theorem: p(θ|x) ∝ p(x|θ) π(θ).

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelaFon.  O^en take proposal
density symmetric:  q(θ; θ0 ) = q(θ0; θ )

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher p(θ), take it;  
if not, only take the step with probability p(θ)/p(θ0).
If proposed step rejected, repeat the current point.
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Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Normalized histogram of θ0 gives 
its marginal posterior pdf:
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
an “expert” says it should be posiFve and not too much  greater 
than 0.1 or so, i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.
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Parameter Estimation 2-2

• Unfolding:

– Formulation of the problem

– Maximum Likelihood for unfolding

– Regularized unfolding
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FormulaJon of the unfolding problem

New goal:  construct 
estimators for the μj (or pj).

“true” histogram

Consider a random variable y, goal is to determine pdf f(y).

If parameterization f(y;θ) known, find e.g. ML estimators .

If no parameterization available, often construct histogram:  

 θ̂
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MigraJon

discreFze:  data are

response
matrix

Effect of measurement errors:  y = true value, x = observed value,

 migraFon of entries between bins,

 f(y) is ‘smeared out’, peaks broadened.

Note μ, ν are constants; n subject to statistical fluctuations.
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Efficiency, background

efficiency

Sometimes an observed event is due to a background process:

SomeFmes an event goes undetected:

βi = expected number of background events in observed histogram.

For now, assume the βi are known. 
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The basic ingredients

“true” “observed”
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Summary of ingredients

‘true’ histogram:

probabiliFes:

expectaFon values for observed histogram:

observed histogram:

response matrix:

efficiencies:

expected background:

These are related by:
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Maximum likelihood (ML) estimator 
from inverting the response matrix

Assume can be inverted:

Suppose data are independent Poisson:

So the log-likelihood is

ML esFmator is 
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Example with ML soluJon

Catastrophic
failure???
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What went wrong?

Suppose μ really had a lot of
fine structure.

Applying R washes this
out, but leaves a residual
structure:

But we don’t have ν, only n.   R−1 “thinks” fluctuaFons in n are 
the residual of original fine structure, puts this back into µ̂.
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Maximum likelihood soluJon revisited

For Poisson data the ML esFmators are unbiased:

Their covariance is:

(Recall these statistical errors were huge for the example shown.)
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ML soluJon revisited (2)
The informaFon inequality gives for unbiased esFmators the 
minimum (co)variance bound:

invert →

This is the same as the actual variance!  I.e. ML soluFon gives
smallest variance among all unbiased esFmators, even though
this variance was huge.

In unfolding one must accept some bias in exchange for a
(hopefully large) reducFon in variance.
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Correction factor method

Nonzero bias unless MC = Nature. 

O^en Ci ~ O(1) so staFsFcal errors far smaller than for ML.
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Reality check on the staJsJcal errors

Suppose for some bin i we have: 

Example from Bob Cousins

But according to the esFmate, only 10 of the 100 events
found in the bin belong there; the rest spilled in from outside.

How can we have a 10% measurement if it is based on only 10
events that really carry informaFon about the desired parameter?

(10% stat.
error)
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Discussion of correcJon factor method

As with all unfolding methods, we get a reduction in statistical
error in exchange for a bias..

The bias should be small if the bin width is substantially larger 
than the resolution, so that there is not much bin migration.

So if other uncertainties dominate in an analysis, correction factors
may provide a quick and simple solution (a “first-look”).

For a more careful analysis the other regularized unfolding 
methods are usually preferred.  
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Regularized unfolding
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Regularized unfolding (2)
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Tikhonov regularizaJon

SoluFon using Singular Value DecomposiFon (SVD).
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SVD implementation of Tikhonov unfolding
A. Hoecker, V. Kartvelishvili, NIM A372 (1996) 469;
(TSVDUnfold in ROOT).

Minimizes 

Numerical implementaFon using Singular Value DecomposiFon.

RecommendaFons for senng regularizaFon parameter τ:

 Transform variables so errors ~ Gauss(0,1);
 number of transformed values significantly different 
 from zero gives prescripFon for τ;
 or base choice of τ on unfolding of test distribuFons.
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SVD example
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RegularizaJon funcJon based on entropy

Can have Bayesian moKvaKon:
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Example of entropy-based unfolding
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EsJmaJng bias and variance

G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11
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Choosing the regularizaJon parameter
G. Cowan, StaWsWcal Data Analysis, OUP (1998) Ch. 11
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Choosing the regularizaJon parameter (2)

G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11
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Choosing the regularizaJon parameter (3)

M. Kuusela and V. M. Panaretos, “StaWsWcal unfolding of elementary parWcle spectra: 
Empirical Bayes esWmaWon and bias-corrected uncertainty quanWfica- Won,” Ann. Appl. 
Stat., vol. 9, pp. 1671–1705, 2015. 

Pim Jordi Verschuuren, Novel Unfolding Methods and Measurements of 5  ̄Differen9al 
Cross Sec9ons with SMEFT interpreta9on using the ATLAS detector at the LHC (PhD thesis), 
Royal Holloway, University of London, 2021.

Or look at the average coverage probability of the 68.3% 
confidence intervals for individual bins

In the limit of no regularizaFon, the coverage probability 
should converge to its nominal value Pnom = 0.683. 

So choose the regularizaFon parameter that gives a minimum 
Pcov = Pnom − ε defined by a tolerance parameter ε. 



44G. Cowan / RHUL Physics INFN 2024, Paestum / Parameter EsBmaBon 2

Some examples with Tikhonov regularizaJon

G. Cowan, StaWsWcal Data Analysis, OUP (1998) Ch. 11
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Some examples with entropy regularization

G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11
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Stat. and sys. errors of unfolded soluJon
In general the statistical covariance matrix of the unfolded 
estimators is not diagonal; need to report full

But unfolding necessarily introduces biases as well, corresponding
to a systemaFc uncertainty (also correlated between bins).

 This is more difficult to esFmate.  Suppose, nevertheless,
 we manage to report both Ustat and Usys.

To test a new theory depending on parameters θ, use e.g.

Mixes frequentist and Bayesian elements; interpretation of result
can be problematic, especially if Usys itself has large uncertainty.  
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Folding
Suppose a theory predicts f(y) → μ (may depend on parameters θ).

Given the response matrix R and expected background β, this 
predicts the expected numbers of observed events: 

From this we can get the likelihood, e.g., for Poisson data,

And using this we can fit parameters and/or test, e.g., using
the likelihood raFo staFsFc
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Versus unfolding
If we have an unfolded spectrum and full staFsFcal and
systemaFc covariance matrices, to compare this to a model μ
compute likelihood

where

Complications because one needs estimate of systematic bias Usys.

If we find a gain in sensitivity from the test using the unfolded
distribution, e.g., through a decrease in statistical errors, then we 
are exploiting information inserted via the regularization (e.g., 
imposed smoothness).
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ML soluJon again
From the standpoint of tesFng a theory or esFmaFng its parameters, 
the ML soluFon, despite catastrophically large errors, is equivalent
to using the uncorrected data (same informaFon content).

There is no bias (at least from unfolding), so use

The esFmators of θ should have close to opFmal properFes:
zero bias, minimum variance.

The corresponding esFmators from any unfolded soluFon cannot
in general match this.

Crucial point is to use full covariance, not just diagonal errors.
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Summary/discussion on unfolding

Unfolding can be a minefield and is not necessary if goal is to 
compare measured distribution with a model prediction.

Even comparison of uncorrected distribution with future theories 
not a problem, as long as it is reported together with the expected 
background and response matrix.

 In practice complications because these ingredients have
 uncertainties, and they must be reported as well. 

Unfolding useful for getting an actual estimate of the distribution
we think we’ve measured; can e.g. compare ATLAS/CMS.

Model test using unfolded distribution should take account of 
the (correlated) bias introduced by the unfolding procedure.
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Some references on unfolding

Lydia Brenner, et al., Comparison of unfolding methods using RooFitUnfold, 
International Journal of Modern Physics A, Vol. 35, No. 24, 2050145 (2020); e-
print:  arXiv:1910.14654.

P.A. Zyla et al., (PDG), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 
update; (Sec. 40.2.5 on unfolding).

G. Cowan, Statistical Data Analysis (1998)  (Ch. 11).

O. Behnke et al., editors, Data analysis in high energy physics, Wiley-VCH, 
Weinheim, (2013) (Ch. 6 by Volker Blobel).

S. Schmitt, Data Unfolding Methods in High Energy Physics, EPJ Web of 
Conferences 137, 11008 (2017), e-print arXiv:1611.01927.

G. Cowan, A Survey of Unfolding Methods in Particle Physics, in M. Whalley and 
L. Lyons (eds.), Advanced Statistical Techniques in Particle Physics (Proceedings) 
Durham, UK, March 18-22, 2002, Conf. Proc. C 0203181 (2002) 248-257.
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Finally...
EsFmaFon of parameters is usually the “easy” part of
staFsFcs:

 FrequenFst:  maximize the likelihood.

 Bayesian:  find posterior pdf and summarize (e.g. mode).

 Standard tools for quanFfying precision of esFmates:
 Variance of esFmators, confidence intervals,...

But there are many potenFal stumbling blocks:

 bias versus variance trade-off (how many parameters to fit?);

 goodness of fit (usually only for LS or binned data);

 choice of prior for Bayesian approach;

 unexpected behaviour in LS averages with correlaFons,

 unknown errors (“errors on errors”)
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Extra Slides
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Errors on Errors
h(ps://xkcd.com/2110/ Randall Munroe, xkcd.com

Details in G. Cowan, Eur. 
Phys. J. C (2019) 79:133, 
arXiv:1809.05778

Collaborators include: 
Enzo Canonero (RHUL), 
Alessandra Brazzale (U. 
Padova)
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Mo@va@on
Analyses that are limited by systemaFc uncertainFes become
sensiFve to the assigned values of systemaFc errors.

But these error es7mates are also uncertain (→ errors on errors)

Could just try inflaFng the systemaFc error esFmates, but this 
turns out not to be enough, especially if the analysis uses least 
squares (equivalent to assuming Gaussian pdfs in likelihood).

Need for “errors on errors” most visible when measurements are 
not internally consistent within their esFmated uncertainFes.

Candidate use cases in parFcle physics:
 CombinaFons of inconsistent measurements
 Analyses where systemaFc error assigned by ad hoc recipe
 Any analysis where assigned systemaFc error is uncertain
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Mo@va@on (2)
Assuming known standard deviations for least squares, uncertainty 
(e.g. confidence interval) does not reflect goodness of fit:

Least squares average of 9 ± 1 and 11 ± 1 is  10 ± 0.71

Least squares average of 5 ± 1 and 15 ± 1 is 10 ± 0.71

Width of confidence interval for the mean does not reflect the 
consistency of the values being averaged.



G. Cowan / RHUL Physics INFN 2024, Paestum / Parameter EsBmaBon 2 57

Formula@on of the problem
Suppose measurements y have probability (density) P(y|μ,θ), 
 μ = parameters of interest
 θ = nuisance parameters
To provide info on nuisance parameters, often treat their best 
estimates u as indep. Gaussian distributed r.v.s., giving likelihood

or log-likelihood (up to addiFve const.)
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Systema@c errors and their uncertainty
SomeFmes σu,i is well known, e.g., it is itself a staFsFcal error 
known from sample size of a control measurement.

Other Fmes the ui are from an indirect measurement, Gaussian 
model approximate and/or the σu,i  are not exactly known.

Or someFmes σu,i is at best a guess that represents an 
uncertainty in the underlying model (“theoreFcal error”).

In any case we can allow that the σu,i are not known in general 
with perfect accuracy.
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Gamma model for variance estimates
Suppose we want to treat the systematic errors as uncertain,
so let the σu,i be adjustable nuisance parameters.

Suppose we have estimates si for σu,i  or equivalently vi = si2, is an 
estimate of σu,i

2.

Model the vi as independent and gamma distributed:

Set α and β so that they give desired relaFve uncertainty r  in σu.

Other ”bell-shaped” models tried; qualitaFvely similar results.

Gamma pdf leads to important mathemaFcal simplificaFons.
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Distributions of v and s = √v
For α, β of  gamma distribuFon, 

relative “error on error”
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Treated like data:       y1,...,yL (the primary measurements)
           u1,...,uN (esFmates of nuisance par.)
           v1,...,vN (esFmates of variances
                 of esFmates of NP)

Adjustable parameters:    μ1,...,μM (parameters of interest)
           θ1,...,θN (nuisance parameters)
           σu,1,...,σu,N (sys. errors = std. dev. of
           of NP esFmates)
Fixed parameters:          r1,...,rN         (rel. err. in esFmate of σu,i)

Likelihood for Gamma Variance Model
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Profiling over systematic errors
We can profile over the σu,i in closed form

which gives the profile log-likelihood (up to addiFve const.)

In limit of small ri and vi → σu,i
2, the log terms revert back to the 

quadraFc form seen with known σu,i.
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Equivalent likelihood from Student’s t

We can arrive at same likelihood by defining

Since ui ~ Gauss and vi ~ Gamma, zi ~ Student’s t

with 

ResulFng likelihood same as profile Lʹ(μ,θ) from gamma model 
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Curve fitting, averages
Suppose independent 
yi ~ Gauss, i = 1,...,N, with

μ are the parameters of interest in the fit funcFon φ(x;μ), 

θ are bias parameters constrained by control measurements 
ui ~ Gauss(θi, σu,i), so that if σu,i are known we have
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Profiling over θi with known σu,i
Profiling over the bias parameters θi for known σu,i gives usual 
least-squares (BLUE) 

Widely used technique for curve fitting in Particle Physics.

Generally in real measurement, ui = 0.

Generalized to case of correlated yi and ui by summing 
statistical and systematic covariance matrices.
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Curve fiSng with uncertain σu,i
Suppose now σu,i

2  are adjustable parameters with gamma 
distributed esFmates vi.

Retaining the θi but profiling over σu,i
2 gives

Profiled values of θi from solution to cubic equations
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Sensi@vity of average to outliers
Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take r = 0.01 for all).
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Sensi@vity of average to outliers (2)
Now suppose the measurement at 10 was actually at 20:

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r → 0).

“outlier”
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Average with all  r = 0.2
If we assign to each measurement r = 0.2, 

Estimate still at 10.00, size of interval moves 0.63 → 0.65
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Average with all  r = 0.2 with outlier
Same now with the outlier (middle measurement 10 → 20)

Estimate →10.75 (outlier pulls much less).

Half-size of interval → 0.78 (inflated because of bad g.o.f.).
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Naive approach to errors on errors
Naively one might think that the error on the error in the previous
example could be taken into account conservaFvely by inflaFng 
the systemaFc errors, i.e., 

But this gives 

without outlier (middle meas. 10)

with outlier (middle meas. 20)

So the sensiFvity to the outlier is not reduced and the size of the
confidence interval is sFll independent of goodness of fit.
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Conclusions on errors on errors
Gamma model for variance esFmates gives confidence intervals
that increase in size when the data are internally inconsistent,
and gives decreased sensiFvity to outliers.

Method assumes that meaningful ri values can be assigned and 
is valuable when systemaFc errors are not well known but 
enough “expert opinion” is available to do so.

Equivalence with Student’s t model, ν = 1/2r2 degrees of 
freedom.

Simple profile likelihood – quadraFc terms replaced by logs:


