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Confidence Interval Basics

• Interval estimation

• Confidence interval from inverting a test

• Example:  limits on mean of Gaussian

• Confidence intervals from the likelihood function

• Confidence intervals in problems with nuisance parameters

• Extra slides:  CLs



3G. Cowan / RHUL Physics INFN 2024, Paestum / Confidence Intervals

Confidence intervals by inverting a test
In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Confidence intervals for a parameter θ can be found by 
defining a test of the hypothesized value θ (do this for all θ): 

 Specify region of data ‘disfavoured’ by θ (critical region wθ),

 i.e., more favoured by some relevant alternative value of θ,

 P(data in critical region|θ) ≤ α for prespecified α, e.g., 0.05.

 If data observed in the critical region, reject the value θ.

Now invert the test to define a confidence interval as:

 set of θ values that are not rejected in a test of size α  
 (confidence level CL is 1- α).
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Confidence interval from p-values

Equivalently, define a p-value for all hypothesized values of θ.

 pθ = P(data having incompatibility with θ ≥ observed | θ )

 Critical region of size α = data values for which p-value ≤ α.

Then the confidence region at confidence level CL = 1- α is

 the set of θ values for which pθ > α.

E.g. an upper limit on θ is the greatest value for which pθ > α. 

 In practice find by setting pθ = α and solve for θ.

Same idea for multidimensional parameter space θ = (θ1,... θM), 
result is confidence “region” with boundary determined by pθ = α.
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Coverage probability of confidence interval
If the true value of θ is rejected, then it’s not in the confidence 
interval.  The probability for this is by construction (equality for 
continuous data):

  P(reject θ|θ) ≤ α = type-I error rate

Therefore, the probability for the interval to contain or “cover” θ is

  P(conf. interval “covers” θ|θ) ≥ 1 – α

This assumes that the set of θ values considered includes the true 
value, i.e., it assumes the composite hypothesis P(x|H,θ).
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When we test the parameter, we should take the critical region to 
maximize the power with respect to the relevant alternative(s).  

 Example:  x ~ Gauss(μ, σ) (take σ known)

 Test H0 : μ = μ0 versus the alternative H1 : μ < μ0

→ Put wμ at region of x-space 
characteristic of low μ (i.e. at low x)

Equivalently, take the p-value to be

Example: upper limit on mean of Gaussian
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Upper limit on Gaussian mean (2)
To find confidence interval, repeat for all μ0, i.e., set pμ0 = α and 
solve for μ0 to find the interval’s boundary

This is an upper limit on μ, i.e., higher μ have even lower p-value 
and are in even worse agreement with the data.

Usually use Φ-1(α) = -Φ-1(1-α) so as to express the upper limit as 
xobs plus a positive quantity. E.g. for α = 0.05, Φ-1(1-0.05) = 1.64.
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μup = the hypothetical value of μ such that there is only a 
probability α to find x ≤ xobs.

Upper limit on Gaussian mean (3)
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1- vs. 2-sided intervals
Now test: H0 : μ = μ0 versus the alternative H1 : μ ≠ μ0

Result is a “central” confidence interval [μlo, μup]:

I.e. we consider the 
alternative to μ0 to include 
higher and lower values, 
so take critical region on 
both sides:

E.g. for  

Note upper edge of two-sided interval is higher (i.e. not as tight
of a limit) than obtained from the one-sided test.
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Approximate confidence intervals/regions 
from the likelihood function

Suppose we test parameter value(s) θ = (θ1, ..., θN)  using the ratio

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define

so higher tθ means worse agreement between θ and the data.

p-value of θ therefore 

need pdf
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Confidence region from Wilks’ theorem
Wilks’ theorem says (in large-sample limit and provided 
certain conditions hold...)

chi-square dist. with # d.o.f. = 
# of components in θ = (θ1, ..., θN).

Assuming this holds, the p-value is

To find boundary of confidence region set pθ = α and solve for tθ:

Recall also 

← set equal to α 
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Confidence region from Wilks’ theorem (cont.)
i.e., boundary of confidence region in θ space is where

For example, for 1 – α = 68.3% and n = 1 parameter,

and so the 68.3% confidence level interval is determined by

Same as recipe for finding the estimator’s standard deviation, i.e.,

is a 68.3% CL confidence interval.
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Example of interval from ln L(θ) 
For N =1 parameter, CL = 0.683, Qα = 1.

Our exponential 
example, now with
only n = 5 events.

Can report ML estimate
with approx. confidence
interval from ln Lmax – 1/2
as “asymmetric error bar”:
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Multiparameter case

For increasing number of parameters, CL = 1 – α decreases for
confidence region determined by a given 

← # of par.
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Multiparameter case (cont.)

Equivalently, Qα increases with n for a given CL = 1 – α.

← # of par.
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Profile Likelihood
Suppose we have a likelihood L(μ,θ) = P(x|μ,θ) with  N 
parameters of interest μ = (μ1,..., μN) and M nuisance parameters 
θ = (θ1,..., θM).  The “profiled” (or “constrained”) values of θ are:

and the profile likelihood is:

The profile likelihood depends only on the parameters of 
interest; the nuisance parameters are replaced by their profiled 
values.

The profile likelihood can be used to obtain confidence 
intervals/regions for the parameters of interest in the same way 
as one would for all of the parameters from the full likelihood.
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Profile Likelihood Ratio – Wilks theorem
Goal is to test/reject regions of μ space (param. of interest).

Rejecting a point μ should mean pμ ≤ α for all possible values of the 
nuisance parameters θ.

Test μ using the “profile likelihood ratio”:

Let tμ = -2 ln λ(μ).  Wilks’ theorem says in large-sample limit:

where the number of degrees of freedom is the number of 
parameters of interest (components of μ).  So p-value for μ is
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Profile Likelihood Ratio – Wilks theorem (2)

The recipe to get confidence regions/intervals for the parameters 
of interest at CL = 1 – α is thus the same as before, simply use the 
profile likelihood:

If we have a large enough data sample to justify use of the
asymptotic chi-square pdf, then if μ is rejected, it is rejected for 
any values of the nuisance parameters.

where the number of degrees of freedom N for the chi-square 
quantile is equal to the number of parameters of interest.

If the large-sample limit is not justified, then use e.g. Monte 
Carlo to get distribution of tμ.
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Extra Slides
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Confidence belt of Neyman construction is a graphical 
representation of the acceptance region (complement of critical 
region) of the test of the parameter. André David
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How to read the green and yellow limit plots
For every value of mH, find the upper limit on μ.

Also for each mH, determine the distribution of upper limits μup one 
would obtain under the hypothesis of μ = 0.  

The dashed curve is the median μup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution.

ATLAS, Phys. Lett. B 716 (2012) 1-29
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Low sensitivity to μ
It can be that the effect of a given hypothesized μ is very small
relative to the background-only (μ = 0) prediction.

This means that the distributions f (qμ|μ) and f (qμ|0) will be
almost the same:
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Having sufficient sensitivity
In contrast, having sensitivity to μ means that the distributions
f (qμ|μ) and f (qμ|0) are more separated: 

That is, the power (probability to reject μ if μ = 0) is substantially 
higher than α.  Use this power as a measure of the sensitivity.
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Spurious exclusion
Consider again the case of low sensitivity.  By construction the 
probability to reject μ if μ is true is α (e.g., 5%).

And the probability to reject μ if μ = 0 (the power) is only slightly 
greater than α.

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV).

“Spurious exclusion”
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Ways of addressing spurious exclusion

The problem of excluding parameter values to which one has
no sensitivity known for a long time; see e.g.,

In the 1990s this was re-examined for the LEP Higgs search by
Alex Read and others

and led to the “CLs” procedure for upper limits.

Unified intervals also effectively reduce spurious exclusion by
the particular choice of critical region.
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The CLs procedure

f (Q|b)    

f (Q|s+b)    

ps+bpb

In the usual formulation of CLs, one tests both the μ = 0 (b) and
μ > 0 (μs+b) hypotheses with the same statistic Q = −2ln Ls+b/Lb:



G. Cowan / RHUL Physics INFN 2024, Paestum / Confidence Intervals 27

The CLs procedure (2)

As before, “low sensitivity” means the distributions of Q under 
b and s+b are very close:

f  (Q|b)    

f (Q|s+b)    

ps+bpb
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The CLs solution (A. Read et al.) is to base the test not on
the usual p-value (CLs+b), but rather to divide this by CLb 
(~ one minus the p-value of the b-only hypothesis), i.e.,

Define:

Reject s+b 
hypothesis if: Increases “effective” p-value  when the two

distributions become close (prevents 
exclusion if sensitivity is low).

f (Q|b)    f (Q|s+b)    

CLs+b 
= ps+b

1−CLb
 = pb

The CLs procedure (3)


