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Frequentist methods 
Order statistics for discovery (D. Cox) 

Limits, etc. (L. Demortier, D. van Dyk) 

Likelihood ratio tests (GDC, C. Roever, J. Conway) 

More on p-values (F. Beaujean)  
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Order statistics for discovery 

Can HEP use this to look for a bump in a histogram?  Need to 
use modified version where signal smeared over several bins. 

D. Cox 
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Limits, etc. L. Demortier 

PCL, CLs, “unconstrained” 
limits for measurement of 
X ~ Gaussian(µ) 
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Limits, etc. (2) D. van Dyk 

Proposed procedure: 

But with PCL it should be easy to communicate where the limit 
(bound) is the observed one, and where it is the power threshold. 
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Improving the model:   
template morphing 

J. Conway 

Often shift in nuisance parameters causes complicated change 
in a distribution – parametrize with e.g. template morphing: 

Need to do this e.g. to properly 
include systematics due to jet 
energy scale, which affects  
different distributions in  
different ways. 
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Marginalize vs. maximize  J. Conway, 
C. Roever 

The point was raised as to whether it is better in some sense to 
construct a ratio of marginalized or profile likelihoods. 

Conway, Roever see little difference: 
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One more comment on Asimov... GDC 

n ~ Poisson(µs+b), median significance, assuming µ = 1, 
with which one would reject µ = 0.  
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Bayesian methods 
Reference priors (L. Demortier, J. Bernardo, M. Pierini) 

Bayes factors (J. Berger) 

Application to sparse spectra (A. Caldwell) 
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Bayes factors J. Berger 

E.g. apply to Poisson counting problem:  N ~ Poisson(s+b) 

(Not easy for HEP applications) (1) 

(2) 

→ 
→ 
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Bayes factors (2) 

(3)  Lower bound on Bayes factor:  make π(s) a delta function at  ̂s.

J. Berger 

(4?)  Can we not simply plot the Bayes factor vs. s  (i.e. report  
        B0s, not B01)? 

So even lowest Bayes factors substantially bigger than the p-values. 
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Bayes factors (3) 
“Bayes factor more intuitive than a p-value.”  (“5σ” ↔ B01 = ?) 

“Automatic” inclusion of look-elsewhere effect (through prior). 

Can we use e.g. 

But, marginal likelihoods can be difficult to compute: 

(K. Cranmer/R. Trotta) 
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K. Cranmer/R. Trotta 
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Reference priors J. Bernardo, 
L. Demortier, 
M. Pierini Maximize the expected Kullback–Leibler 

divergence of posterior relative to prior: 

This maximizes the expected posterior information 
about θ when the prior density is π(θ). 

Finding reference priors “easy” for one parameter: 
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Reference priors (2) 
J. Bernardo, 
L. Demortier, 
M. Pierini 

Actual recipe to find reference prior nontrivial; 
see references from Bernardo’s talk, website of 
Berger (www.stat.duke.edu/~berger/papers) and also  
Demortier, Jain, Prosper, PRD 82:33, 34002 arXiv:1002.1111: 

Prior depends on order of parameters.  (Is order dependence  
important? Symmetrize?  Sample result from different orderings?) 
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L. Demortier 
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Bayesian discovery with sparse data A. Caldwell 

Meaningful elicitation of prior 
from community consensus, here: 

Consensus priors doable in practice?   
(Committee?) 
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More on p-values (model validation)  F. Beaujean 

Suppose we’re only given p-values – how should this 
influence a Bayesian’s degree of belief? 

OK but... not same as P(M0|data), rather a justification of p-value. 

Or, justify by saying that a bizarre result prompts one to  
comment on (and quantify) just how bizarre it is. 
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Decision theory 
J. Bernardo, 
D. van Dyk 

Statistical methods can be formulated in elegant but (for particle 
physicists) not fully familiar language of decision theory: 

 Specify loss function, minimize expected loss, etc. 

How does this map onto the usual ways that physicists view 
discovery/limits? 

What are specific benefits for HEP of this approach?  

 “It’s a tool to be aware of.”   – D. van Dyk 
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Combining results N. Krasnikov, 
K. Cranmer 

Given p-values p1,..., pN of H, what is combined p? 

Rather, given the results of N (usually independent) experiments,  
what inferences can one draw from their combination? 

Full combination is difficult but worth the effort for e.g. 
combined ATLAS/CMS Higgs search. 

Form full likelihood function of the joint experiment; 

 Use to construct statistical tests (e.g. likelihood ratio) 

 Single common parameter of interest:  µ = σ/σSM 

 Also (in principle) common nuisance parameters (e.g., 
 luminosity, parton uncerainties,...) 

New software:  RooStats (RooFit/ROOT). 
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Combined ATLAS/CMS Higgs search 
K. Cranmer 

Given p-values p1,..., pN of H, what is combined p? 

Better, given the results of N (usually independent) experiments,  
what inferences can one draw from their combination? 

Full combination is difficult but worth the effort for e.g. Higgs search. 
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Look-elsewhere effect O. Vitells, 
G. Ranucci, 
A. Caldwell 
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Look-elsewhere effect (2) O. Vitells 

Correction to p-value from theory of random fields;  
related to mean number of “upcrossings” of likelihood ratio 
(Davies, 1987). 

estimate with MC 
at low reference 
level 
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Look-elsewhere effect (3) O. Vitells 

Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 
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Look-elsewhere effect in time series G. Ranucci 
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Bayesian Analysis Toolkit (BAT) 
S. Pashapour 

General framework specifically for Bayesian computation, 
especially MCMC for marginalizing posterior probabilities. 

E.g. convergence diagnostics à la Gelman & Rubin, 

Wish list(?):  computation of marginal likelihoods; 
           support for important types of priors (reference,...) 
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RooStats G. Schott 
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RooFit Workspaces G. Schott 

Able to construct full likelihood for combination of channels 
(or experiments). 
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RooStats G. Schott 

Example of tools:  Bayesian priors from formal rules: 
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Examples of using RooStats 
V. Zhukov, 
K. Cranmer 

E.g. studying effect of correlated systematics in combined fit 
using various methods with RooStats (V. Zhukov): 

And of course the previously mentioned ATLAS/CMS Higgs 
 combination (K. Cranmer). 
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Lessons from the Tevatron H. Prosper 

Example:  search for single top with multivariate analysis. 
Need accurate understanding of background (mature experiments). 
Would community accept MVA as readily if this were SUSY? 
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Bayesian analysis for cross section 
of single top 

H. Prosper 
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Converted to frequentist p-value 
for discovery of single top 

H. Prosper 
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In practice:  CMS, ATLAS, LHCb 
A. Harel, 
D. Casadei, 
J. Morata Publications from LHC have started to arrive!!!!!  

A. Harel (CMS) 

D. Casadei (ATLAS) 
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Example:  CMS W’ search 
A. Harel 
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Example: ATLAS dijet resonance search D. Casadei 
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Example: LHCb search for Bs → µµ J. Morata 

Multivariate methods used:  MLP, “Δχ2”, BDT, etc. 
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Applications:  parton densities S. Forte 

Fits to parton densities(e.g., MSTW, CTEQ) have found  
“reasonable” χ2, but the standard procedure for errors, Δχ2 = 1,  
leads to unrealistically small variation of parton densities. 

Could be consequence of: 
     inconsistent data; 
     inadequate model, e.g., parametric functions in fit (MSTW):  

NNPDF approach:  parameterize using neural network;  
much larger number (37×7 = 259) of parameters compared to  
MSTW (20) or CTEQ (26); regularize using cross validation. 
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Partons (2) S. Forte 

NNPDF predictions quote uncertainties using “standard” 
Bayesian propagation of experimental uncertainties as obtained 
by CTEQ and MSTW when using very large Δχ2 (50 – 100). 

I.e. limited parametric form  
was important source of the  
“Δχ2=?” problem? 

Still need to address other 
systematics (e.g. theory erorrs), 
data compatibility, etc. 
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Applications: gravitational waves C. Roever, 
S. Sardy 

Wavelet transforms to search for blips in time series: 

Regularization to suppress noisy wavelet coefficients, 
→ bias-variance trade-off; mathematics similar to unfolding. 
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Applications:  astrophysics O. Lahav 

Wide variety of problems – mostly Bayesian approach. 

Parameters can be:  fundamental (e.g., curvature of universe); 
          “geographical” (eccentricity of an orbit). 

Wide use of Bayes factors for model selection. 

HEP should look at astro  
community’s tools for  
computing these  
(e.g. MultiNest). 
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Bayesian exoplanet search O. Lahav 

← priors 
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The Banff Challenge 2a 
T. Junk 

Two problems: 

The winners: 
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Some thoughts on 5σ (van Dyk) 
D. van Dyk 
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Some more thoughts D. van Dyk 

Need to develop more ways to insert nuisance parameters 
into models in clever, physically motivated, controlled ways. 

 And figure out how to constrain these parameters with 
 control measurements; assign meaningful priors to them.  
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Outlook 
Great progress in methods/software/sophistication since the first 
“Confidence Limits” workshop at CERN in 2000. 

And many areas where progress still being made: 
 Spurious exclusion when no sensitivity (CLs, PCL, other?)  
 Bayesian priors (reference and otherwise) 
 Look-elsewhere effect (solved?) 
 Software tools (RooStats, BAT) 
 Ways to improve models 
 ... 
 ... 

The LHC data floodgates are open – we need to continue to  
improve and develop our analysis methods, taking full advantage 
of the lessons from the statistics community and other fields. 
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Thanks 
Thanks to all the speakers for contributing highly interesting talks. 

Thanks to the non-particle physicists and especially the professional 
statisticians for sharing their insights and expertise. 

Thanks to the organisers, Louis, Albert, Michelangelo, for arranging 
such a stimulating and productive meeting. 


