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Frequentist methods

Order statistics for discovery (D. Cox)
Limits, etc. (L. Demortier, D. van Dyk)
Likelihood ratio tests (GDC, C. Roever, J. Conway)

More on p-values (F. Beaujean)
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Order statistics for discovery D. Cox

Tests at n positions. Statistical independence.
Gives a set {Py,..., P,}. transformto Z = —log P
Define the order statistics 71y < Z(g) < ... < Z(») = maxZ;.

Plot of the ordered Z is helpful descriptively and is the basis for various

formal tests. In particular
e null situation is a straight line of unit slope
e simplest alternative is one outlying point
e incorrect null distribution leads to a smooth curve

e internal correlation yields a straight line of slope different from one

Can HEP use this to look for a bump in a histogram? Need to
use modified version where signal smeared over several bins.
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Limits, etc. L. Demortier

An alternative approach is to report the observed upper limit only if it is above
a prespecified “sensitivity bound”. If the observed limit is below the bound,
only the bound itself is reported. This was proposed by V. Highland in an un-
published note in 1987. Some colleagues from ATLAS have motivated this
method with a statistical power argument: you shouldn’t reject a given param-
eter value unless you have a decent probability of detecting it when it is the
true value. Hence the name “power-constrained limits” (PCL). A delicate issue
here is the choice of sensitivity bound.

- Power-Consireinesd Upper Lima

Urcoratramed Upper Limits
: SSOSHP S (414 b 29
P E—— PCL, CLs, “unconstrained
limits for measurement of
X ~ Gaussian(u)
! 7
R
s
A B |
-2 -1 ) 1 ? 3 .
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Limits, etc. (2) D. van Dyk

Proposed procedure:

Always report

@ Whether the source was detected.
@ A Confidence Interval for the source intensity.

e This may be a one-sided interval taking the form of an
upper limit.

© The sensitivity, in order to quantify the strength of the
experiment.

Corrections to standard UL
@ PCL mixes a standard UL with the sensitivity.
@ CLg alters the UL for a smoothed version of PCL.

But with PCL it should be easy to communicate where the limit
(bound) 1s the observed one, and where it 1s the power threshold.
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Improving the model: J. Conway
template morphing

Often shift in nuisance parameters causes complicated change
in a distribution — parametrize with e.g. template morphing:

2000} - _ .0 - 0 +
2 nominal shifted pi = pg + FM(pg g, 157)
[+¥)
>
® 1000} \‘ /

sool. Need to do this e.g. to properly
| . include systematics due to jet
g +100} - | energy sca.16, Whi(_:h affects
g different distributions in
= 00} _J—-'JF_ different ways.

0 20 40 60 80 100
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J. Conway,

Marginalize vs. maximize
C. Roever

The point was raised as to whether it 1s better in some sense to
construct a ratio of marginalized or profile likelthoods.

Conway, Roever see little difference:

s = 10 Monte Carlo results (for Ho: 'no signal’)
5 - —
10% bockground constraint ® -
-
R e
g o
T 0V} -
: :
3
£ £3-
:
St s
£ c
g
=
0 A v T T T T T
0 5 0 5 0.0 0.2 0.4 0.6 0.8

profile kmit posterior 9% upper limit
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Comment on profile likelithood

Suppose originally we measure X, likelihood is L(X6).

To cover a systematic, we enlarge model to include a nuisance
parameter v, new model is L(X6, V).

To use profile likelihood, data must constrain the nuisance
parameters, otherwise suffer loss of accuracy in parameters of
interest.

Can e.g. use a separate measurement to constrain v, e.g., with
likelihood L(J{v). This becomes part of the full likelihood, i.e.,

L(x,yl@,v) = L(x|0.v)L(y|v)
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Comment on marginal likelihood

When using a prior to reflect knowledge of v, often one treats
this as coming from the measurement J; 1.¢.,

m(v) x L(ylv)mo(v)

N

original prior,
Then the marginal likelihood is

Lu(0) = / L(210.v)=(v) dv

So here L in the integrand does not include the information
from the measurement ) this is included in the prior.

G. Cowan PHYSTAT 2011 Summary
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One more comment on Asimov... GDC

n ~ Poisson(us+b), median significance, assuming ¢ = 1,
with which one would reject = 0.

median[Zy|s + b] = \/‘2 ((s+b)In(l + s/b) — s)

— \%a

- s/N\b

* exact

med[Zo| 1]

»
. ]

“Exact” values from MC,
jumps due to discrete data.

Asimov ‘j‘lo, A good approx.
for broad range of s, b.

s/\b only good for s « b.

R )
A A a A aaaal A A A aaaal A Al
107" 1 10

10?

b
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Bayesian methods

Reference priors (L. Demortier, J. Bernardo, M. Pierini)
Bayes factors (J. Berger)
Application to sparse spectra (A. Caldwell)

G. Cowan PHYSTAT 2011 Summary
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J. Berger
Bayes factors ©

Bayes factor of Hy to Hy: ratio of likelithood under Hy to average likelihood
under Hy (or “odds” of Hy to H;)

E.g. apply to Poisson counting problem: N ~ Poisson(s+b)

Poisson(N | 0 + b) bN et

BortN) = = Boisson(V | s + bya(s) ds ~ Jo(s + D)V e~ 0m(s) ds

(1) Choose 7(s) subjectively (Not easy for HEP applications)
(2) Choose 7(s) to be the ‘intrinsic prior’ 7(s) = b(s +b)~2.

pN e—b p(N—1) o—b
(s 4+ b)N e~(s+Dp(s+b)-2ds (N —1,b)

By

Case 1: p=0.00025 f N=7,b=12 — By =0.0075
Case 2: p=0.025if N =6,b=22. — By =0.26
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Bayes factors (2) J. Berger

(3) Lower bound on Bayes factor: make 7(s) a delta function at 5.

Poisson(N | 0 + b) S Poisson(N | 0 + b)
J,” Poisson(N | s+ b)m(s) ds ~— Poisson(N | 5+ b)

b N )
= min{l, (]_V) e.‘\ _b} .

Case 1: Bp; > 0.0014 (recall p = 0.00025)

Bopi(N) =

Case 2: Bp; > 0.11 (recall p = 0.025)

So even lowest Bayes factors substantially bigger than the p-values.

(4?7) Can we not simply plot the Bayes factor vs. s (1.e. report
B, not B,,)?
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Bayes factors (3)

“Bayes factor more intuitive than a p-value.” (“56” < B, =7?)

“Automatic” inclusion of look-elsewhere effect (through prior).

But, marginal likelihoods can be difficult to compute:

m = / L(2|0)7 () d

Can we use e.g.

MultiNest: a multi-modal implementation of nested sampling. Also an extremely

efficient sampler for multi-modal likelihoods
Feroz & Hobson (2007), RT et al (2008), Feroz et al (2008)

(K. Cranmer/R. Trotta)

15
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K. Cranmer/R. Trotta

The nested sampling algorithm

=
o

-60 1 L(x)

% o.n 2 o e
In{L)
g &

. :
18 & &
8

or

5 661 s T 5 = 3 () 2 3 0 0 T x
(animation courtesy of David Parkinson)

An algorithm originally aimed primarily at the Bayesian
evidence computation (Skilling, 2006):

X()\) — fc(9)>,\ P(O)d@
= [dOL(O)P fo

Feroz et al (2008), arxiv: 0807.4512, Trotta et al (2008), arxiv: 0809.3792
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Reference priors

divergence of posterior relative to prior:

p(0|z)

(0) de

Dir, p] E/p(@\l‘) In

This maximizes the expected posterior information
about 6 when the prior density 1s 7(6).

Finding reference priors “easy” for one parameter:

Theorem 1 Let z'*) = {z,,..., 2.} denote k conditionally inde-

pendent observations from M. For sufficiently large k
Ti(6) x exp{E ) [ log pu(f | z‘::"‘":)]}

where py(6| 2*)) oc [I¥, p(2:|0) h(8) is the posterior which cor-
responds to any arbitrarily chosen strictly positive prior function
h(0) which makes the posterior proper for any z'*.
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L. Demortier,

Maximize the expected Kullback—Leibler M. Pierini
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J. Bernardo,
Reference priors (2) L. Demortier,
M. Pierini
Actual recipe to find reference prior nontrivial;
see references from Bernardo’s talk, website of

Berger (www.stat.duke.edu/~berger/papers) and also
Demortier, Jain, Prosper, PRD 82:33, 34002 arX1v:1002.1111:

()
) = B )

] B p(z) | 0) h(0)
withm(0) = esp [ plawy 10 | HE G5 dr |

?

Prior depends on order of parameters. (Is order dependence
important? Symmetrize? Sample result from different orderings?)
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L. Demortier

There still seem to be some important puzzles regarding reference priors:

@ What is the proper probabilistic interpretation of a reference posterior?
- Reference posterior probabilities are not subjective probabilities! So
what are they then?

- Can reference posterior inferences be reported by themselves, or
should they be reported only as part of a sensitivity analysis? If the
latter, how should one choose alternative priors?

@® How should we deal with the compact set normalization procedure?

- The general definition of reference priors involves the taking of limits,
and this must be done carefully in order to avoid infinities; the standard
approach is to use sequences of nested compact sets that converge to
the whole parameter space.

- Unfortunately there is no unique way of choosing these compact sets,
and there is no guarantee that different choices lead to the same result,
or even

his ambiguity prevents us from designing a cdmpletely genera>
umerical algorithm.

© How should we handetmpicitstatisticalr moaels ¢

- Can we combine ABC methods with numerical algorithms for
computing reference posteriors?

G. Cowan PHYSTAT 2011 Summary 19



Bayesian discovery with sparse data - C2ldwell

<

of - _ Discovery or not ?

sf
.t / Meaningful elicitation of prior

from community consensus, here:

3p

2f po(H) = py(H)=1/2

1 [ ] . Consensus priors doable in practice?
o.:;slugs_ PRI S |

2000 2020 2040 200 2080 (Committee?)
E [keV]

p(H|spectrum)<0.01, ‘evidence’ (better >99% belief in ‘'new physics’)

p(H|spectrum)<0.0001, ‘discovery’ (better >99.99% belief in "new
physics’) (very stringent, DoB contains our belief in the new physics)

Note: intended to be the real ‘degree-of-belief’. No fudging allowed afterwards
— otherwise it implies you did not really believe your prior.

G. Cowan PHYSTAT 2011 Summary
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More on p-values (model validation) - Beawean

Suppose we’re only given p-values — how should this
influence a Bayesian’s degree of belief?

« Similar prior for all models P(M;) ~ P(M;)

- Bayes Theorem: P(Mjy|p) =~ Il{"(leo)
> i—o P(p|M;)
Small p Large p
1 » 4
P(Mylp =~ 0) = <1 P(Mylp~1)~1

OK but... not same as P(M,|data), rather a justification of p-value.

Or, justify by saying that a bizarre result prompts one to
comment on (and quantify) just how bizarre it is.

G. Cowan PHYSTAT 2011 Summary 21



J. Bernardo,

. D. van Dyk
Decision theory g

Statistical methods can be formulated 1n elegant but (for particle
physicists) not fully familiar language of decision theory:
Specify loss function, minimize expected loss, etc.

How does this map onto the usual ways that physicists view
discovery/limits?

What are specific benefits for HEP of this approach?

“It’s a tool to be aware of.” — D. van Dyk

G. Cowan PHYSTAT 2011 Summary 22



Combining results N. Krasnikov,
K. Cranmer

Given p-values p,,..., p, of H, what 1s combined p?

Rather, given the results of N (usually independent) experiments,
what inferences can one draw from their combination?

Full combination 1s difficult but worth the effort for e.g.
combined ATLAS/CMS Higgs search.

Form full likelithood function of the joint experiment;
Use to construct statistical tests (e.g. likelihood ratio)
Single common parameter of interest: u = o/ogy,

Also (in principle) common nuisance parameters (e.g.,
luminosity, parton uncerainties,...)

New software: RooStats (RooFit/ROOT).
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K. Cranmer

Combined ATLAS/CMS Higgs search

The full model has
top level model
12 observables and P | ATLAS part
50 parameters

4 41 F =
} I w s
o 5 o "’4_—_—___A -, Al 4Ll I #‘qu'
b bl b oo ’WW'E'
R Lo T e o rmmm ISP TNtV MMW"M-W

' -
) \ A

At this point, no correlated parameter of interest

systematics across experiments y= —9BR
ocsmBRsy

—




O. Vitells,
G. Ranucci,
A. Caldwell

Look-elsewhere effect

[(E. Gross and O. Vitells, Eur. Phys. 1. C, 70, 1-2,
(2010) , arXiv:1005.1891]

o The “look elsewhere” effect occurs when one searches for a
signal in some space of parameters (mass, shape, location
in the sky, etc.)

o In the language of Hypothesis testing:
test H, (no signal) against H,(6) ,
The signal parameters (8) are not present under H, --
Wilks’ theorem does not apply

o The problem is to correctly estimate the p-value of a “local”
excess of events, taking into account the full range.

o Monte-Carlo simulation is a straight-forward way, but can
be computationally very expansive

Search for a
<4mmx peak in some

Mass range

S 25




Look-elsewhere effect (2)

O. Vitells

Correction to p-value from theory of random fields;
related to mean number of “upcrossings” of likelithood ratio

(Davies, 1987).

50
r . P(Qo > u)
= T
g 30 | < E[N,]+P(q,(0) > u)
220 7y | an 1 2
2 0| 31 =N,e +5P(Zl >u)
% 0 60 00 120 '\
Sp P estimate with MC
d
q,(m) AM at low reference
vl 4 : level
0 20 40 100 120

G. Cowan
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Look-elsewhere eftect (3) O. Vitells

Generalization to multiple dimensions: number of upcrossings
replaced by expectation of Euler characteristic:

Elp(A)]=Y N0, @)

o Number of disconnected components minus number of

"holes’
¢=1 ¢=0 p=2

Applications: astrophysics (coordinates on sky), search for
resonance of unknown mass and width, ...
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T - G. Ranucci
Look-elsewhere effect in time series anteet

The correct incorporation of the Look Elsewhere Effect is vital while searching for
a modulation hidden in time series, otherwise “look long enough, find
anything!” (Numerical Recipes)

The LEE change completely the detection scenario passing from the single
frequency to the multiple frequency strategy search

The sensitivity to low modulation amplitude is severely affected
Same situation as the search of a particle of unknown mass

A parallelism can be established between the frequency search and a “prototype”
approach to the scan of a mass range, also through similar analytical formalisms

Finally what modulation in the solar neutrino data? So far, only the annual
modulation

G. Cowan PHYSTAT 2011 Summary 28



S. Pashapour

Bayesian Analysis Toolkit (BAT)

General framework specifically for Bayesian computation,
especially MCMC for marginalizing posterior probabilities.

E.g. convergence diagnostics a la Gelman & Rubin,

?

Rl
3
2
1
0
1
2
3
-4

10 10’ 1 10’ 10°
' e o ¢ h-?nlon

Wish list(?): computation of marginal likelihoods;

support for important types of priors (reference,...)

G. Cowan PHYSTAT 2011 Summary
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RooStats G. Schott

a collaborative project with contributors from ATLAS, CMS and

ROOT aimed to provide & consolidate statistical tools needed by
LHC

»using same tools: compare easily results across experiments
- not only desirable but necessary for combinations

RooStats is built on top of the RooFit toolkit :
» data modelling language (for PDFs, likelihoods, ...)

G. Cowan PHYSTAT 2011 Summary 30



RooFit Workspaces G. Schott

RooWorkspace class of RooFit: possibility to save it to a ROOT file

- very good for electronic publication of data
and likelihood function

- and greatly help for combination (that's the
format agreed to share between Atlas & CMS)

Rooworkspace w("w”,"joint workspace™) ;

// Import top-level pdfs and all their components, variables
w.amport(“channelA._root:w:pdfA” ,RenameAl IVariablesExcept (“A”,“mh1ggs™))
w.import(“channelB._root:w:pdfB”,Renamevariable("mH"”, "'mhiggs™)) ;

w.import(” ") ;
// Construct joint pdr
w.lfactory(“STMUL : : Joint (chan[A,B,C] ,A-pdlA,B-pdIB,C- )

Able to construct full likelihood for combination of channels
(or experiments).
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RooStats

G. Schott

Example of tools: Bayesian priors from formal rules:

* New RooJeffreys class: "objective" prior based on formal rules
(related to Fisher information and the Cramér-Rao bound)

=
-4

Projgctioré of iegreys
o o
L N

2

0.03
0.02}

0.01f

validation on a Poisson likelihood model

Analytical
RooFit

V, =-EB
i

1 1 1 l - I 1 l 1 l Ll 1 l 1 1 1 1 ) l -
20 40 60 80 100 120 140 160 180 200
mu

« implemented for arbitrary PDF
using "Asimov" dataset to

help calculate the Fisher
information [arXiv:1007:1727]

7 (8) o \/detI (5)
' o]

T
T O,y =—E | g5 FX:0)

M

B0, 00y, v

A0 ; 0y vy

"G L S In L4 - O A 1 - O Qs 1
_an-aoJ | 2 2.

0,00,

’ 1=1 =1

« Missing (but | heared some people are working on) a RooStats

implementation of reference priors ...

G. Cowan

PHYSTAT 2011 Summary 32



. V. Zhukov,
Examples of using RooStats K. Cranmer

E.g. studying effect of correlated systematics in combined fit
using various methods with RooStats (V. Zhukov):

Combined model: 5 channels

-4 . .| B
O — . B
245 Bayrs Nobs=20 2ok i -y Pan +C Nobs-20
L 4 ch. sy=t @7 a ch, conmon 9pal o [ ——— 5 ¢, sysn
40 5 ¢h. comman ayal - 3uh reuyd. aol % ch. common syst
asf 5 ch na sysl 30>\\ ol ceeeo S ah no RYAL
3af =N sof.,
25| 20 4\-,\ 25
201 15 . 201
15 ~ \ 15 Ny
[ o4
10 B N 0[5,
sk T —— [ - 5 .
e 1 1 1 Co Nl : 1 e B D T
a 10 20 ‘30 "40 ‘50 % 10 20 30 a0 50 o 10 20 20 40 ND*’-‘U
MNbkg Mbkg 9

And of course the previously mentioned ATLAS/CMS Higgs
combination (K. Cranmer).
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H. Prosper
[Lessons from the Tevatron P

Example: search for single top with multivariate analysis.
Need accurate understanding of background (mature experiments).
Would community accept MVA as readily if this were SUSY?

The data are reduced to D@ Single Top 2.3 fb"
: - | |
M counts described by the 2 Data ¢ Weiets
likelihood > L3 th+tqh W t
2 600 H. e Multijets S
o . |
p(n I 0,8, u) lﬁ | $$ 40: ‘S:g;rml Region
M 4001 5.
= HPoisson(n,. le,o+u,) - S 20
I=

where o (the cross section)

is the parameter of interest 0 02 04 06 08 -

and the ¢; and y; are nuisance Discriminant Output

parameters.
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Bayesian analysis for cross section ~ H. Prosper
of single top
DO (and CDF) compute the posterior p(o | #) assuming:
1. aflat prior for n(o)
2. an evidence-based prior for n(e, u)

— 0.5

T I -1
2 D@ 2.3 fb
— 0.4 r

3‘ I o-measured

® 03 - = 3.94 + 038 pb
0 r

o 0.2 o) expected

— +0.99

o =3.50_,77pb
o: o 1 - O/ f

o b

et

2]

O

o

2 4 6 8 10
tb+tgb Cross Section [pb]
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G. Cowan

Converted to frequentist p-value H. Prosper

for discovery of single top

Estimate of “signal significance” using a p-value:
po=Plt> 1| Hy]

The statistic 7 is the mode of the the posterior density.

107 Dz 2.3 fb !
jL—\

106 Ry 67.8M pseudodatasets

L 17 above measured

cross section

L,
L. p-value=2.5x10"
yp

-
o
H

Pseudodatasets
333

Observed
4. significance

=5.030
© gmes=394pb |-
1 pdaad o aa b s o L s s W R Ll.AlAAlA,

0 1 2 3 4 5 6
tb+ tgb Cross Section [pb]
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, A. Harel,
In practice: CMS, ATLAS, LHCb  p, casadei,

J. Morata

The experimentalist perspective
Claiming a discovery first is the best case scenario.
But claiming a discovery is also the worst case scenario if you got it wrong.

Which of these statistical tools helps us get it right?

-2 A “pragmatic” approach is typical.
No standard approach. Yet. A. Harel (CMS)

e So far, different analyses followed different routes

- Gradually moving toward more uniformity
- But impossible to ignore that real differences exist

* There is no single “correct” method
D. Casadei (ATLAS)
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A. Harel
Example: CMS W’ search

The simplest scenario, as far as limit setting goes:  Integrated luminosity
A counting experiment (Poisson probability in each M; bin) .
* No interference between backgrounds and signal N . =b+ Lf:o;é,ff

» Systematic uncertainties factorize easily |
Selection efficiency
(for that bin)

Use a simple Bayesian procedure [Fermilab-TM-2104

* nuisance parameters are integrated out grRlue® IR
. . = - W ey
* priors. e 104L I rum e 1
Z10%L ‘ -
- - !n -
p( ) [ ConSt 'f 0 < aeff < O-max 103 Other Ekgs
O-eff _i : g e Data 3
otherwise - W 14 8 Tevi
i -« WHN=1.1TaWied =
* log normal priors for the i o W N1 T2V
nuisance parameters b,L,¢ 105 3
» background uncertainty (e.g. fit results) i 1
summarized in one number 1 e T
« typical approximation 10l e o S T
iHE ;E._.,I ig'
Rule out a W" with mass 107" 500 400 600 800 1I 500 15651400
below 1.36TeV at 95% CL M. (GeV/c?)



Example: ATLAS dijet resonance search

« First step was to fit bkg model
- Different statistics tested
- No evidence for new physics

* For each hypothesized mass an upper limit
has been obtained in the Bayesian approach

— Likelihood = product of Poisson factors

including both sign
C T I IIIIIIIIII .
——— ¥WC0 ATLAS
10° = q* Penugiad
- 4" MCOF
—a— Obsarved 95% C L. upper lime
108 = T ee— Expected 95% C.L. ugper limil 3
g f - \.\ Fxpactad Emit r.aft; and O5%, hardr.- 1 f
> N [ Lot =315 nb
0= R\ ' -
X 0L N5 =7 TeV
10° = E
- :a‘”%._ o - .
10 = . 4
S b o L TR -
500 1000 1500
Resonance Mass [GaV)
G. Cowan

al and background

| » Coverage found by

generating pseudo-
experiments

Events

(D-B)/NB

D. Casadei

T T T T T T T T T T T T T T

* Data ATLAS
Fit
—— q'(300) \5=7TeV
—=— G0 1 — 345 nb”
° q (1200) :

Reconstructed nt’ [GeV]

[Phys. Lett. B694 (2011) 327]

Background spectrum and likelihood
/(\) p— /)l(] - _\-)Pz.\-P3+p4]r1\'

Edd | bs:8)=]]
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Example: LHCDb search for B, — pp J. Morata
Multivariate methods used: MLP, “Ay~, BDT, etc.

g LI ] I L L l LR l LI I L I LI I LI I LI I LI LI :
5 1&:‘:‘..---..--- —
) w -
D - ha. o _
“0.9995 sssssmssssihans ™ s =
0.999 poaoooce: |
09985~ ¢ -

: & -

0998 3

N -

0.9975 e =

i : :

0.997 B -

) .

0% I “A - =

0.9965 3 T -
- IR (I n.__L . R _1_71

Figure 19: Performance of GLg and set of other multivariate methods. The X axis
shows the efficiency, and the Y axis the rejection. Blue squares: GLy, Open stars: BDT.
Short Dashed: PDERS-PCA. Violet triangles: Fisher Discriminant. Red cyrcles: Best
performant NN.Green dashed line: Support Vector Machine.Orange solid line: RuleFit.
Open crosses: less performant NN. Filled Cyan histogram: FDA-SA
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. iy S. Fort
Applications: parton densities o

Fits to parton densities(e.g., MSTW, CTEQ) have found
“reasonable” y?, but the standard procedure for errors, Ay? =1,
leads to unrealistically small variation of parton densities.

Could be consequence of:
inconsistent data;
inadequate model, e.g., parametric functions in fit (MSTW):

xrqlx, Q("))) = A(1—=x)"(1 —~—(.7‘“"r'—i—'y.lr‘.).r'S
NNPDF approach: parameterize using neural network;

much larger number (37x7 = 259) of parameters compared to
MSTW (20) or CTEQ (26); regularize using cross validation.
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S. Fort
Partons (2) o

NNPDF predictions quote uncertainties using “standard”
Bayesian propagation of experimental uncertainties as obtained

by CTEQ and MSTW when using very large Ay? (50 — 100).
e
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- I.e. limited parametric form
WOT0 20718 a9 was important source of the
“Ay>=?" problem?
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Still need to address other
systematics (e.g. theory erorrs),
data compatibility, etc.
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Applications: gravitational waves  C. Roever,
S. Sardy

Wavelet transforms to search for blips in time series:
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Regularization to suppress noisy wavelet coefficients,
— bias-variance trade-off; mathematics similar to unfolding.
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. : O. Lahav
Applications: astrophysics
Wide variety of problems — mostly Bayesian approach.

Parameters can be: fundamental (e.g., curvature of universe);
“geographical” (eccentricity of an orbit).

Wide use of Bayes factors for model selection.

By, = PlMo) p(dIM) = / p(d|f, M)p(6| M)de
| s

e.g. B=1 weak; B=5 strong

HEP should look at astro
But how sensitive to assumed priors? Community’s tools for
Variations: AIC, BIC, DIC,... computing these

(e.g. MultiNest).
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Bayesian exoplanet search O. Lahav

M M R Craphics Device 2 (IACTIVE

Doppler Shift due to
Stellar Wobble
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T. Junk
The Banff Challenge 2a

Two problems:

2107 prerr——————— N
E Bl Sipral % BAS RESES A S
E | Backeround 1 .?. 250 = ls;z;gc!;(a;mundZ
w02 ¢ D T L gackgmundl
) ¢ Data
200 r
0 _ Just one signal model.
150 | -- No LEE!
1
L
10
](} 2 . - . 0 . ..n_A_A_AJ_LA_A.._L_H_LA_ llllll | WIS SR SRR e e
i ' 3 O a0, gon, . 0 -
0 01 02 03 04 05 06 07 08 09 | 0 0102 0304 05 06 07 08 09 1
Mark Allen
he wi Stefan Schmitt Stefan Schmitt
The winners:  wolfgang Rolke Eilam Gross & Ofer Vitells

Eilam Gross and Ofer Vitells
Stanford Challenge Team
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D. van Dyk
Some thoughts on 56 (van Dyk)

Using 5¢ is really not the answer:
@ We don’t know the actual effect of Systematics and LEE.
@ “No distribution is valid to the 5¢ tail!”
@ Sampling distributions are only asymptotic approximations.
@ Must calculate extreme-tail probabilities.

We have INQO idea what the actual level is.

50 simply sweeps the problem under the rug.
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D. van Dyk
Some more thoughts e

@ Focus on model diagnostics and model improvement.

@ View prior distributions as a way to illuminate assumptions,
not as a source of assumptions.

@ Focus on ultimate scientific goals, not superficial properties
of procedures.

Need to develop more ways to insert nuisance parameters
into models in clever, physically motivated, controlled ways.

And figure out how to constrain these parameters with
control measurements; assign meaningful priors to them.
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Outlook

Great progress 1n methods/software/sophistication since the first
“Confidence Limits” workshop at CERN 1n 2000.

And many areas where progress still being made:
Spurious exclusion when no sensitivity (CLs, PCL, other?)
Bayesian priors (reference and otherwise)
Look-elsewhere effect (solved?)
Software tools (RooStats, BAT)

Ways to improve models

The LHC data floodgates are open — we need to continue to
improve and develop our analysis methods, taking full advantage
of the lessons from the statistics community and other fields.
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Thanks

Thanks to all the speakers for contributing highly interesting talks.

Thanks to the non-particle physicists and especially the professional
statisticians for sharing their insights and expertise.

Thanks to the organisers, Louis, Albert, Michelangelo, for arranging
such a stimulating and productive meeting.
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