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Outline
→ Lecture 1: Probability and Bayes theorem, 

Frequentist and Bayesian statistics, 
likelihood function, parameter estimation,
maximum likelihood, information inequality, 
properties of MLE

Lecture 2:  Frequentist hypothesis tests, 
Neyman-Pearson lemma/likelihood ratio, 
goodness of fit, p-values and significances, 
confidence interval from a test, 
Wilk's theorem and confidence regions

Almost everything is a subset of the University of London course:

http://www.pp.rhul.ac.uk/~cowan/stat_course.html
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A quick review of probability

Frequentist (A = outcome of
repeatable observation)

Subjective (A = hypothesis)

Conditional probability:

A and B are independent iff:

I.e. if A, B independent, then

E.g. rolling a die, 
outcome n = 1,2,...,6:
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Bayes’ theorem
Use definition of conditional probability and

→ (Bayes’ theorem)

If set of all outcomes S = ∪i Ai
with Ai disjoint, then law of total 
probability for P(B) says

so that Bayes’ theorem becomes

Bayes’ theorem holds regardless of how probability is 
interpreted (frequency, degree of belief...).

B ∩ Ai

Ai

B

S
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: x).

Probability = limiting frequency

Probabilities such as

P (string theory is true), 
P (0.117 < αs < 0.119), 
P (Biden wins in 2024),

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

Preferred theories (models, hypotheses, ...) are those  that 
predict a high probability for data “like” the data observed.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior
probabilities were π(H), then it says how these probabilities
should change in the light of the data.

No general prescription for priors (subjective!)
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Hypothesis, likelihood
Suppose the entire result of an experiment (set of 
measurements) is a collection of numbers x.  

A (simple) hypothesis is a rule that assigns a probability to each 
possible data outcome:

Note:
1)  For the likelihood we treat the data x as fixed.
2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
more undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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The likelihood function for i.i.d.* data

Consider n independent observations of x:  x1, ..., xn,  where
x follows f(x; θ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed
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Parameter estimation
The parameters of a pdf are any constants that characterize it, 

r.v.

Suppose we have a sample of observed values: x = (x1, ..., xn)

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.

i.e., θ indexes a
set of hypotheses.
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Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

biasedlarge
variance

best

We want small (or zero) bias (systematic error):

→ average of repeated measurements should tend to true value.

And we want a small variance (statistical error):
→ small bias & variance are in general conflicting criteria
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Maximum Likelihood Estimators (MLEs)
We define the maximum likelihood estimators or MLEs to be 
the parameter values for which the likelihood is maximum.

Maximizing L
equivalent to 
maximizing log L

Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but 
in practice they’re very good).
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MLE example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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MLE example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
generate 50  values
using τ = 1:

We find the ML estimate:
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MLE example:  parameter of exponential pdf (3)

For the MLE

For the exponential distribution one has for mean, variance:

we therefore find

→

→
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The information inequality
The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only MLE).  For a single parameter:

= MVB    (Minimum 
Variance Bound)

Proof in Exercise 6.6 of SDA, http://www.pp.rhul.ac.uk/~cowan/sda/prob/prob_6.pdf 

“Efficiency” of an estimator = MVB / actual variance.

An estimator whose variance equals the MVB is said to be efficient.  

where
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MVB for MLE of exponential parameter

We found for the exponential parameter the MLE 

and we showed b = 0, hence 𝜕b/𝜕τ = 0.

Find 

We find

and since E[ti] = τ for all i,

and therefore So here the MLE is efficient..

,
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Large-sample (asymptotic) properties of MLEs
Suppose we have an i.i.d. data sample of size n:  x1,...,xn
In the large-sample (or “asymptotic”) limit (n → ∞) and assuming 
regularity conditions one can show that the likelihood and MLE 
have several important properties.

The regularity conditions include:  
• the boundaries of the data space cannot depend on the 

parameter;
• the parameter cannot be on the edge of the parameter space;
• lnL(θ) must be differentiable;
• the only solution to 𝜕lnL/𝜕θ = 0 is θ.^

In the slides immediately following the properties are shown 
without proof for a single parameter; the corresponding 
properties hold also for the multiparameter case, θ = (θ1,...,θm).
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log-likelihood becomes quadratic

The likelihood function becomes Gaussian in shape, i.e.
the log-likelihood becomes quadratic (parabolic).

The MLE becomes increasingly precise as the (log)-likelihood 
becomes more tightly concentrated about its peak,
but L(θ) = P(x|θ) is the probability for x, not a pdf for θ.
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The MLE converges to the true parameter value

In the large-sample limit, the MLE converges in probability
to the true parameter value.

That is, for any ε > 0, 

The MLE is said to be consistent.
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MLE is asymptotically unbiased
In general the MLE can be biased, but in the large-sample limit, 
this bias goes to zero:

(Recall for the exponential parameter we found the bias was
identically zero regardless of the sample size n.)
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The MLE’s variance approaches the MVB

In the large-sample limit, the variance of the MLE approaches 
the minimum-variance bound, i.e., the information inequality 
becomes an equality (and bias goes to zero):

The MLE is said to be asymptotically efficient.
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The MLE’s distribution becomes Gaussian
In the large-sample limit, the pdf of the MLE becomes Gaussian,  

For example, exponential MLE 
with sample size n = 100.

Note that for exponential, MLE 
is arithmetic average, so 
Gaussian MLE seen to stem 
from Central Limit Theorem.

where is the minimum variance bound (note bias is zero).
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Distribution of MLE of exponential parameter
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Variance of estimators: graphical method
Expand ln L (θ) about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

→  to get , change θ away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Information inequality for N parameters
Suppose we have estimated N parameters θ = (θ1,...,θN)   

The Fisher information matrix is

The information inequality states that the matrix

and the covariance matrix of estimators θ is ^

is positive semi-definite:  

zTMz ≥ 0 for all z ≠ 0, diagonal elements ≥ 0  
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Information inequality for N parameters (2)

In practice the inequality is ~always used in the large-sample limit:
bias → 0
inequality → equality, i.e, M = 0, and therefore V-1 = I

That is, 

This can be estimated from data using

Find the matrix V-1 numerically (or with automatic differentiation),
then invert to get the covariance matrix of the estimators
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Multiparameter graphical method for variances

Expand lnL(θ) to 2nd order about MLE:

relate to covariance matrix of 
MLEs using information 
(in)equality.

ln Lmax zero

Result: 

So the surface corresponds to

,  which is the equation of a (hyper-) ellipse.
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Multiparameter graphical method (2)

Distance from MLE to tangent planes gives standard deviations.
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Extra slides
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Some statistics books, papers, etc.
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.
Luca Lista, Statistical Methods for Data Analysis in Particle Physics, 
Springer, 2017.
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006
S. Brandt, Statistical and Computational Methods in Data Analysis, 
Springer, New York, 1998.
R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 
083C01 (2022); pdg.lbl.gov sections on probability, statistics, MC.
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Theory ↔ Statistics ↔ Experiment
Theory (model, hypothesis): Experiment (observation):

+ response of measurement
apparatus

= model prediction
data

Uncertainty enters
on many levels

→ quantify with
probability
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Example of ML with 2 parameters

Consider a scattering angle distribution with x = cos θ,

or if xmin < x < xmax, need to normalize so that 

Example:  α = 0.5, β = 0.5, xmin = -0.95, xmax = 0.95, 
generate n = 2000 events with Monte Carlo.

need to find maximum
numerically
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Example of ML with 2 parameters:  fit result
Finding maximum of ln L(α, β) numerically gives

N.B.  No binning of data for fit,
but can compare to histogram for
goodness-of-fit (e.g. ‘visual’ or χ2). 

(Co)variances from

=   correlation coefficient
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Two-parameter fit:  MC study
Repeat ML fit with 500 experiments, all with n = 2000 events:

Estimates average to ~true values;
(Co)variances close to previous estimates;
marginal pdfs approximately Gaussian.
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The ln Lmax - 1/2 contour for two parameters

For large n, ln L takes on quadratic form near maximum:

The contour is an ellipse:
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(Co)variances from ln L contour

→ Tangent lines to contours give standard deviations.

→ Angle of ellipse φ related to correlation:

The α, β plane for the first
MC data set


