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 Outline 
Large-sample statistical formulae for a search at the LHC 

 Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, 
  EPJC 71 (2011) 1-19 
 Significance test using profile likelihood ratio 
 Systematics included via nuisance parameters 
 Distributions in large sample limit, no MC used. 

Progress on related issues (some updates from PHYSTAT2011): 
 The “look elsewhere effect” 
 The “CLs” problem 
 Combining measurements 
 Improving treatment of systematics 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 

Assume the ni are Poisson distributed with expectation values 

G. Cowan  Statistical methods for particle physics / RHUL 16.3.11 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 

Assume the mi are Poisson distributed with expectation values 
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nuisance parameters (θs, θb,btot) 
Likelihood function is 



5 

The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 
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maximizes L for 
Specified µ	



maximize L	



The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 
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i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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p-value for discovery 

G. Cowan  Statistical methods for particle physics / RHUL 16.3.11 

Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

Statistical methods for particle physics / RHUL 16.3.11 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 
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So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  
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Test statistic for upper limits 
For purposes of setting an upper limit on µ use 
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Note for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ,  i.e., want high probability to reject µ if 
true value (µ′) is lower. 

From observed qµ find p-value: 

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 

where 
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Alternative test statistic for upper limits 
Assume physical signal model has µ > 0, therefore if estimator 
for µ comes out negative, the closest physical model has µ = 0. 

Therefore could also measure level of discrepancy between data  
and hypothesized µ with 
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Performance not identical to but very close to qµ (of previous slide). 
qµ  is simpler in important ways:  asymptotic distribution is  
independent of nuisance parameters. 
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Wald approximation for profile likelihood ratio 
To find p-values, we need: 

For median significance under alternative, need: 
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Use approximation due to Wald (1943) 

sample size 
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Noncentral chi-square for -2lnλ(µ) 
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If we can neglect the O(1/√N) term, -2lnλ(µ) follows a 
noncentral chi-square distribution for one degree of freedom 
with noncentrality parameter 

As a special case, if µ′ = µ then Λ = 0 and -2lnλ(µ) follows 
a chi-square distribution for one degree of freedom (Wilks). 
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The Asimov data set 
To estimate σ (or equivalently Λ), consider special data set 
where all statistical fluctuations suppressed and ni, mi are replaced 
by their expectation values (the “Asimov” data set): 
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Asimov value of 
-2lnλ(µ) gives non- 
centrality param. Λ,	


or equivalently, σ.	
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Relation between test statistics and 	
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Distribution of q0 

Assuming the Wald approximation, we can write down the full  
distribution of q0 as 
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The special case µ′ = 0 is a “half chi-square” distribution:  



17 

Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  
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The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 
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Relation between test statistics and       	
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Assuming the Wald approximation for – 2lnλ(µ), qµ and qµ  
both have monotonic relation with µ.  

~ 

And therefore quantiles 
of qµ, qµ can be obtained 
directly from those  
οf µ (which is Gaussian). ˆ 

̃ 

~ 
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Distribution of qµ	



Similar results for qµ	
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Distribution of qµ	
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Similar results for qµ	

̃ 

̃ 
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Monte Carlo test of asymptotic formula 	
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Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ	


level (q0 = 25) already for 
b ~ 20. 
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Monte Carlo test of asymptotic formulae 	
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For very low b, asymptotic 
formula underestimates Z0. 

Then slight overshoot before 
rapidly converging to MC 
value. 

Significance from asymptotic formula, here Z0 = √q0 = 4,  
compared to MC (true) value. 
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Monte Carlo test of asymptotic formulae 	
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Asymptotic  f (q0|1)  good already for fairly small samples. 

Median[q0|1] from Asimov data set; good agreement with MC. 
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Monte Carlo test of asymptotic formulae 	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 
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Monte Carlo test of asymptotic formulae 	
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Same message for test based on qµ. 

qµ and qµ give similar tests to  
the extent that asymptotic 
formulae are valid. 

~ 

~ 
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Discovery significance for n ~ Poisson(s + b) 

Consider again the case  where we observe n events , 
model as following Poisson distribution with mean s + b 
(assume b is known). 

1)   For an observed n, what is the significance Z0 with which 
     we would reject the s = 0 hypothesis? 

2)   What is the expected (or more precisely, median ) Z0 if  
     the true value of the signal rate is s? 
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Gaussian approximation for Poisson significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for Poisson significance 

Likelihood function for parameter s is 

or equivalently the log-likelihood is 

Find the maximum by setting  

gives the estimator for s:  
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Approximate Poisson significance (continued) 
The likelihood ratio statistic for testing s = 0 is 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z0|s+b], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(µ s+b),  median significance, 
assuming µ = 1, of the hypothesis µ = 0 

“Exact” values from MC, 
jumps due to discrete data. 

Asimov √q0,A good approx. 
for broad range of s, b. 

s/√b only good for s « b. 

CCGV, arXiv:1007.1727 
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Example 2:  Shape analysis	
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Look for a Gaussian bump sitting on top of: 
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Monte Carlo test of asymptotic formulae 	
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Distributions of qµ here for µ that gave pµ = 0.05. 
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Using f(qµ|0) to get error bands	
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We are not only interested in the median [qµ|0]; we want to know 
how much statistical variation to expect from a real data set. 

But we have full f(qµ|0); we can get any desired quantiles. 
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Distribution of upper limit on µ	
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±1σ (green) and ±2σ (yellow) bands from MC; 

Vertical lines from asymptotic formulae 
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Limit on µ versus peak position (mass)	
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±1σ (green) and ±2σ (yellow) bands from asymptotic formulae; 

Points are from a single arbitrary data set. 
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Using likelihood ratio Ls+b/Lb	
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Many searches at the Tevatron have used the statistic 

likelihood of µ = 1 model (s+b) 

likelihood of µ = 0 model (bkg only) 

This can be written 
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Wald approximation for Ls+b/Lb	
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Assuming the Wald approximation, q can be written as 

i.e. q is Gaussian distributed with  mean and variance of 

To get σ2 use 2nd derivatives of lnL with Asimov data set. 
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Example with Ls+b/Lb	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
b = 20, s = 10, τ = 1. 

So even for smallish data  
sample, Wald approximation 
can be useful; no MC needed. 
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The Look-Elsewhere Effect 
Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→ EPJC) 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.	



The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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p-value for fixed mass 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0. 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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p-value for floating mass 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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Distributions of tfix, tfloat 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 
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Trials factor 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells (arXiv:1005.1891) show that the “trials factor”  
can be approximated by 

where ‹N› = average number of “upcrossings” of -2lnL in fit range  
and 

is the significance for the fixed mass case. 

So we can either carry out the full floating-mass analysis (e.g. use  
MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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Upcrossings of -2lnL 
The Gross-Vitells formula for the trials factor requires the 
mean number “upcrossings” of -2ln L in the fit range based 
on fixed threshold. 

estimate with MC 
at low reference 
level 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 

Statistical methods for particle physics / RHUL 16.3.11 

Eilam Gross and Ofer Vitells, PHYSTAT2011 
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 The “CLs” issue 
When the b and s+b hypotheses are well separated, there is  
a high probability of excluding the s+b hypothesis (ps+b < α) if in 
fact the data contain background only (power of test of s+b  
relative to the alternative b is high). 

f (Q|b)     

f (Q| s+b)     

ps+b pb 
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 The “CLs” issue (2) 
But if the two distributions are close to each other (e.g., we test a  
Higgs mass far above the accessible kinematic limit) then there is  
a non-negligible probability of rejecting s+b even though we have  
low sensitivity (test of s+b low power relative to b). 

f (Q|b)     
f (Q|s+b)     

ps+b pb 

In limiting case of no 
sensitivity, the distri- 
butions coincide and  
the probability of  
exclusion = α (e.g. 0.05). 

But we should not regard 
a model as excluded if we 
have no sensitivity to it! 
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 The CLs solution 
The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(one minus the background of the b-only hypothesis, i.e., 

Define: 

Reject s+b  
hypothesis if: Reduces “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (q|b)     f (q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 
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CLs discussion 
In the CLs method the p-value is reduced according to the 
recipe 

Statistics community does not smile upon ratio of p-values 
An alternative would to regard parameter µ as excluded if: 

 (a) p-value of µ < 0.05 
 (b) power of test of µ with respect to background-only 
       exceeds a specified threshold  

i.e. “Power Constrained Limits”.  Coverage is 1-α if one is 
sensitive to the tested parameter (sufficient power) otherwise  
never exclude (coverage is then 100%). 

Ongoing study.  In any case should produce CLs result for  
purposes of comparison with other experiments.   
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Combination of channels 
For a set of independent decay channels, full likelihood function is 
product of the individual ones: 

Trick for median significance: estimator for µ is equal to the 
Asimov value µ′ for all channels separately, so for combination, 

For combination need to form the full function and maximize to find  
estimators of µ, θ. 

 → ongoing ATLAS/CMS effort with RooStats framework 

where 

https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome 
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RooStats 
G. Schott 
PHYSTAT2011 

Statistical methods for particle physics / RHUL 16.3.11 
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RooFit Workspaces 

Able to construct full likelihood for combination of channels 
(or experiments). 

Statistical methods for particle physics / RHUL 16.3.11 

G. Schott 
PHYSTAT2011 
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Combined ATLAS/CMS Higgs search 
K. Cranmer 
PHYSTAT2011 

Given p-values p1,..., pN of H, what is combined p? 

Better, given the results of N (usually independent) experiments,  
what inferences can one draw from their combination? 

Full combination is difficult but worth the effort for e.g. Higgs search. 
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Summary (1) 
Asymptotic distributions of profile LR applied to an LHC search. 

 Wilks: f (qµ |µ) for  p-value of µ. 

 Wald approximation for f (qµ|µ′). 

“Asimov” data set used to estimate median qµ for sensitivity. 

 Gives σ of distribution of estimator of µ. 

Asymptotic formulae especially useful for estimating sensitivity in 
high-dimensional parameter space. 

Can always check with MC for very low data samples and/or 
when precision crucial. 



G. Cowan  Statistical methods for particle physics / RHUL 16.3.11 55 

Summary (2) 

ˆ 

Progress on related issues for LHC discovery: 

 Look elsewhere effect (Gross and Vitells) 

 CLs problem → Power Constrained Limits (ongoing) 

 New software for combinations (and other things):  RooStats 

Needed: 

 More work on how to parametrize models so as to include 
 a level of flexibility commensurate with the real systematic 
 uncertainty, together with ideas on how to constrain this 
 flexibility experimentally (control measurements). 
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Extra slides 
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Profile likelihood ratio for unified interval 
We can also use directly 
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as a test statistic for a hypothesized µ. 

where 

Large discrepancy between data and hypothesis can correspond 
either to the estimate for µ being observed high or low relative 
to µ. 

This is essentially the statistic used for Feldman-Cousins intervals 
(here also treats nuisance parameters). 
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Distribution of tµ	



Using Wald approximation, f (tµ|µ′) is noncentral chi-square 
for one degree of freedom:  
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Special case of µ = µ ′ is chi-square for one d.o.f. (Wilks). 

The p-value for an observed value of tµ is 

and the corresponding significance is 
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Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ γ  
 for a prespecified γ, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ . 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size γ  (confidence level is 1 - γ ). 

The interval will cover the true value of θ with probability ≥ 1 - γ. 

Equivalent to confidence belt construction; confidence belt is  
acceptance region of a test. 

G. Cowan  
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Relation between confidence interval and p-value 

Equivalently we can consider a significance test for each 
hypothesized value of θ, resulting in a p-value, pθ.   

 If pθ < γ, then we reject θ.  

The confidence interval at CL = 1 – γ consists of those values of  
θ  that are not rejected. 

E.g. an upper limit on θ is the greatest value for which pθ ≥ γ.  

 In practice find by setting pθ = γ and solve for θ. 

G. Cowan  
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Higgs search with profile likelihood 
Combination of Higgs boson search channels (ATLAS) 
     Expected Performance of the ATLAS Experiment:  Detector,  
     Trigger and Physics, arXiv:0901.0512, CERN-OPEN-2008-20. 

Standard Model Higgs channels considered (more to be used later): 
            H → γγ	


           H → WW (*) → eνµν	


           H → ZZ(*) → 4l  (l = e, µ)   
            H → τ+τ- → ll, lh 

Used profile likelihood method for systematic uncertainties: 
 background rates, signal & background shapes. 
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Combined median significance 
ATLAS arXiv:0901.0512 

N.B. illustrates  
statistical method, 
but study did not  
include all usable 
Higgs channels. 
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An example: ATLAS Higgs search	
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(ATLAS Collab., CERN-OPEN-2008-020) 



64 

Cumulative distributions of q0	
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To validate to 5σ level, need distribution out to q0 = 25, 
i.e., around 108 simulated experiments. 

Will do this if we really see something like a discovery. 
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Example:  exclusion sensitivity	
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Median p-value of µ = 1 hypothesis versus Higgs mass assuming 
background-only data (ATLAS, arXiv:0901.0512). 
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Dealing with systematics 

Suppose one needs to know the shape of a distribution. 
Initial model (e.g. MC) is available, but known to be imperfect. 

Q:  How can one incorporate the systematic error arising from 
use of the incorrect model? 

A:  Improve the model. 

That is, introduce more adjustable parameters into the model 
so that for some point in the enlarged parameter space it  
is very close to the truth. 

Then use profile the likelihood with respect to the additional 
(nuisance) parameters.  The correlations with the nuisance  
parameters will inflate the errors in the parameters of interest. 

Difficulty is deciding how to introduce the additional parameters. 

S. Caron, G. Cowan, S. Horner, J. Sundermann, E. Gross, 2009 JINST 4 P10009 
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Example of inserting nuisance parameters 
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Fit of hadronic mass distribution from a specific τ decay mode.   

Important uncertainty in background from non-signal τ  modes. 

        Background rate from other  
        measurements, shape from MC. 

Want to include uncertainty in rate, mean, width of background 
component in a parametric fit of the mass distribution. 

fit from MC 
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Step 1:  uncertainty in rate 
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Scale the predicted background by a factor r:  bi → rbi 

Uncertainty in r is σr 

Regard r0 = 1 (“best guess”) as Gaussian (or not, as appropriate) 
distributed measurement centred about the true value r, which  
becomes a new “nuisance” parameter in the fit.   

New likelihood function is: 

For a least-squares fit, equivalent to 
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Dealing with nuisance parameters  
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Ways to eliminate the nuisance parameter r from likelihood. 

 1) Profile likelihood: 

2) Bayesian marginal likelihood: 

(prior) 

Profile and marginal likelihoods usually very similar.   

Both are broadened relative to original, reflecting the uncertainty  
connected with the nuisance parameter. 
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Step 2:  uncertainty in shape 
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Key is to insert additional nuisance parameters into the model. 

E.g. consider a distribution g(y) .  Let y → x(y),  
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More uncertainty in shape 
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The transformation can be applied to a spline of original MC 
histogram (which has shape uncertainty). 

Continuous parameter α shifts distribution right/left. 

Can play similar game with width (or higher moments), e.g., 
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A sample fit (no systematic error) 
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Consider a Gaussian signal, polynomial background, and 
also a peaking background whose form is take from MC: 

Template  
from MC 

True mean/width of signal: 

True mean/width of back- 
ground from MC: 

Fit result: 
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Sample fit with systematic error 
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Suppose now the MC template for the peaking background was 
systematically wrong, having 

Now fitted values of signal parameters wrong,  
poor goodness-of-fit: 
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Sample fit with adjustable mean/width 
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Suppose one regards peak position and width of MC template 
to have systematic uncertainties: 

Incorporate this by regarding the nominal mean/width of the 
MC template as measurements, so in LS fit add to χ2 a term: 

orignal mean  
of MC template 

altered mean  
of MC template 
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Sample fit with adjustable mean/width (II) 
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Result of fit is now “good”: 

In principle, continue to add nuisance parameters until  
data are well described by the model. 
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Systematic error converted to statistical 
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One can regard the quadratic difference between the statistical 
errors with and without the additional nuisance parameters as 
the contribution from the systematic uncertainty in the MC template:  

Formally this part of error has been converted to part of statistical 
error (because the extended model is ~correct!). 
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Systematic error from “shift method” 
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Note that the systematic error regarded as part of the new statistical  
error (previous slide) is much smaller than the change one would  
find by simply “shifting” the templates plus/minus one standard  
deviation, holding them constant, and redoing the fit.  This gives: 

This is not necessarily “wrong”, since here we are not improving 
the model by including new parameters. 

But in any case it’s best to improve the model! 
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Issues with finding an improved model 
Sometimes, e.g., if the data set is very large, the total χ2 can 
be very high (bad), even though the absolute deviation between 
model and data may be small. 

It may be that including additional parameters "spoils" the 
parameter of interest and/or leads to an unphysical fit result 
well before it succeeds in improving the overall goodness-of-fit. 

 Include new parameters in a clever (physically motivated, 
 local) way, so that it affects only the required regions. 

 Use Bayesian approach -- assign priors to the new nuisance 
 parameters that constrain them from moving too far (or use  
 equivalent frequentist penalty terms in likelihood). 

Unfortunately these solutions may not be practical and one may 
be forced to use ad hoc recipes (last resort). 


