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Outline

General statistical formalism for a search at the LHC

Mainly frequentist

Significance test using profile likelihood ratio

Distributions of profile likelihood ratio in large sample limit

(with E. Gross, O. Vitells, K. Cranmer)

General strategy for dealing with systematics

Improve model by including additional parameters

Example 1:  tau hadronic mass distribution

Example 2:  b → sg
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Prototype analysis 

Search for signal in a region of phase space; result is histogram

of some variable x giving numbers:

Assume the ni are Poisson distributed with expectation values
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signal

where

background

strength parameter
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Prototype analysis (II)

Often also have a subsidiary measurement that constrains some

of the background and/or shape parameters:

Assume the mi are Poisson distributed with expectation values
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nuisance parameters (qs, qb,btot)

Likelihood function is

(N.B. here m =

number of counts,

not mass!)
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The profile likelihood ratio

Can base significance test on the profile likelihood ratio:
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maximizes L for

specified m

maximize L

The likelihood ratio gives optimum test between two point 

hypotheses (Neyman-Pearson lemma).

Should be near-optimal in present analysis with

variable m and nuisance parameters q.
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Test statistic for discovery

Try to reject background-only (m = 0) hypothesis using
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Large q0 means increasing incompatibility between the data

and hypothesis, therefore p-value for an observed q0,obs is

will get formula for this later

i.e. only regard upward fluctuation of data as evidence against

the background-only hypothesis.



page 7

Test statistic for upper limits

For purposes of setting an upper limit on m use
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Note for purposes of setting an upper limit, one does not regard

an upwards fluctuation of the data as representing incompatibility

with the hypothesized m.
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p-value / significance of hypothesized m

Test hypothesized m by giving

p-value, probability to see data 

with ≤ compatibility with m

compared to data observed:

Equivalently use significance,

Z, defined as equivalent number

of sigmas for a Gaussian 

fluctuation in one direction: 
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Using p-value for discovery/exclusion

Carry out significance test of various hypotheses (background-only,

signal plus background, …)

Result is p-value.

Exclude hypothesis if p-value below threshold:

Discovery:  test of background-only hypothesis.  Exclude if

p < 2.9 × 10-7 (i.e. Gaussian signif. Z = F-1(1-p) > 5)

Limits:  test signal (+background) hypothesis.  Exclude if

p < 0.05               (i.e. 95% CL limit)
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Wald approximation for profile likelihood ratio

To find p-values, we need:

For median significance under alternative, need:
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Use approximation due to Wald (1943)

sample size
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Distribution of q0

Assuming the Wald approximation, we can write down the full 

distribution of q0 as
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The special case m′ = 0 is a “half chi-square” distribution: 
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Cumulative distribution of q0, significance

From the pdf, the cumulative distribution of q0 is found to be 
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The special case m′ = 0 is 

The p-value of the m = 0 hypothesis is

Therefore the discovery significance Z is simply
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Distribution of qm

Similar results for qm
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An example
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Error bands
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Dealing with systematics

Suppose one needs to know the shape of a distribution.

Initial model (e.g. MC) is available, but known to be imperfect.

Q:  How can one incorporate the systematic error arising from

use of the incorrect model?

A:  Improve the model.

That is, introduce more adjustable parameters into the model

so that for some point in the enlarged parameter space it 

is very close to the truth.

Then use profile the likelihood with respect to the additional

(nuisance) parameters.  The correlations with the nuisance 

parameters will inflate the errors in the parameters of interest.

Difficulty is deciding how to introduce the additional parameters.

S. Caron, G. Cowan, S. Horner, J. Sundermann, E. Gross, 2009 JINST 4 P10009
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Example of inserting nuisance parameters
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Fit of hadronic mass distribution from a specific t decay mode.  

Important uncertainty in background from non-signal t modes.

Background rate from other 

measurements, shape from MC.

Want to include uncertainty in rate, mean, width of background

component in a parametric fit of the mass distribution.

fit from MC
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Step 1:  uncertainty in rate
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Scale the predicted background by a factor r:  bi → rbi

Uncertainty in r is sr

Regard r0 = 1 (“best guess”) as Gaussian (or not, as appropriate)

distributed measurement centred about the true value r, which 

becomes a new “nuisance” parameter in the fit.  

New likelihood function is:

For a least-squares fit, equivalent to
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Dealing with nuisance parameters 
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Ways to eliminate the nuisance parameter r from likelihood.

1) Profile likelihood:

2) Bayesian marginal likelihood:

(prior)

Profile and marginal likelihoods usually very similar.  

Both are broadened relative to original, reflecting the uncertainty 

connected with the nuisance parameter.
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Step 2:  uncertainty in shape
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Key is to insert additional nuisance parameters into the model.

E.g. consider a distribution g(y) .  Let y → x(y), 



page 21

More uncertainty in shape
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The transformation can be applied to a spline of original MC

histogram (which has shape uncertainty).

Continuous parameter a shifts distribution right/left.

Can play similar game with width (or higher moments), e.g.,
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A sample fit (no systematic error)
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Consider a Gaussian signal, polynomial background, and

also a peaking background whose form is take from MC:

Template 

from MC

True mean/width of signal:

True mean/width of back-

ground from MC:

Fit result:
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Sample fit with systematic error
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Suppose now the MC template for the peaking background was

systematically wrong, having

Now fitted values of signal parameters wrong, 

poor goodness-of-fit:
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Sample fit with adjustable mean/width
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Suppose one regards peak position and width of MC template

to have systematic uncertainties:

Incorporate this by regarding the nominal mean/width of the

MC template as measurements, so in LS fit add to c2 a term:

orignal mean 

of MC template

altered mean 

of MC template
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Sample fit with adjustable mean/width (II)
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Result of fit is now “good”:

In principle, continue to add nuisance parameters until 

data are well described by the model.
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Systematic error converted to statistical
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One can regard the quadratic difference between the statistical

errors with and without the additional nuisance parameters as

the contribution from the systematic uncertainty in the MC template: 

Formally this part of error has been converted to part of statistical

error (because the extended model is ~correct!).
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Systematic error from “shift method”
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Note that the systematic error regarded as part of the new statistical 

error (previous slide) is much smaller than the change one would 

find by simply “shifting” the templates plus/minus one standard 

deviation, holding them constant, and redoing the fit.  This gives:

This is not necessarily “wrong”, since here we are not improving

the model by including new parameters.

But in any case it’s best to improve the model!
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Issues with finding an improved model
Sometimes, e.g., if the data set is very large, the total c2 can

be very high (bad), even though the absolute deviation between

model and data may be small.

It may be that including additional parameters "spoils" the

parameter of interest and/or leads to an unphysical fit result

well before it succeeds in improving the overall goodness-of-fit.

Include new parameters in a clever (physically motivated,

local) way, so that it affects only the required regions.

Use Bayesian approach -- assign priors to the new nuisance

parameters that constrain them from moving too far (or use 

equivalent frequentist penalty terms in likelihood).

Unfortunately these solutions may not be practical and one may

be forced to use ad hoc recipes (last resort).
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Summary and conclusions
Key to covering a systematic uncertainty is to include the 

appropriate nuisance parameters, constrained by all available info.

Enlarge model so that for at least one point in its

parameter space, its difference from the truth is negligible.

In frequentist approach can use profile likelihood (similar with

integrated product of likelihood and prior -- not discussed today).

Too many nuisance parameters spoils information about

parameter(s) of interest.

In Bayesian approach, need to assign priors to (all) parameters.

Can provide important flexibility over frequentist methods.

Can be difficult to encode uncertainty in priors.

Exploit recent progress in Bayesian computation (MCMC).

Finally, when the LHC announces a 5 sigma effect, it's important

to know precisely what the "sigma" means.
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Extra slides
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Fit example: b → sg (BaBar)
B. Aubert et al. (BaBar), Phys. Rev. D 77, 051103(R) (2008).

Decay of one B fully reconstructed (Btag).

Look for high-energy g from rest of event.

Signal and background yields from fit to mES in bins of Eg.

e-
D*
p

e+

Btag

Bsignal

Xs

g high-energy g

"recoil method"
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Fitting mES distribution for b → sg

Fit mES distribution using 

superposition of Crystal Ball 

and Argus functions:

Crystal

Ball

Argus

shapesrates obs./pred. events in ith bin

log-likelihood:
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Simultaneous fit of all mES distributions

Need fits of mES distributions in 14 bins of  Eg:

At high Eg, not enough events to constrain shape,

so combine all Eg bins into global fit:

Start with no energy dependence, and include one

by one more parameters until data well described.

Shape parameters could vary (smoothly) with Eg.

So make Ansatz for shape parameters such as
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Finding appropriate model flexibility

Here for Argus x parameter, linear dependence gives significant

improvement; fitted coefficient of linear term -10.7 ± 4.2.

Inclusion of additional free parameters (e.g., quadratic E

dependence for parameter x) do not bring significant improvement.

So including the additional energy dependence for the shape

parameters converts the systematic uncertainty into a statistical

uncertainty on the parameters of interest.

D. Hopkins, PhD thesis, RHUL (2007).

c2(1) - c2(2) = 3.48

p-value of (1) = 0.062

→data want extra par.


