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Outline 
0) Brief review of statistical tests and setting limits. 
1)  A measure of discovery sensitivity is often used to plan a future  
analysis, e.g., s/√b, gives approximate expected discovery  
significance (test of s = 0) when counting n ~ Poisson(s+b).  A  
measure of discovery significance is proposed that takes into  
account uncertainty in the background rate. 
 
2)  In many searches for new signal processes, estimates of 
rates of some background components often based on Monte Carlo 
with weighted events.  Some care (and assumptions) are required 
to assess the effect of the finite MC sample on the result of the test. 
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(Frequentist) statistical tests 
Consider test of a parameter µ, e.g., proportional to cross section. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Equivalently define a p-value pµ such that the critical region  
corresponds to pµ < α.  

Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Test statistics and p-values 
Often construct a test statistic, qµ, which reflects the level 
of agreement between the data and the hypothesized value µ. 

For examples of statistics based on the profile likelihood ratio, 
see, e.g., CCGV arXiv:1007.1727 (the “Asimov” paper). 

Usually define qµ such that higher values represent increasing  
incompatibility with the data, so that the p-value of µ is: 

Equivalent formulation of test:  reject µ if pµ < α. 

pdf of qµ assuming µ observed value of qµ 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval depends on the choice of the critical region of the test.  

Put critical region where data are likely to be under assumption of 
the relevant alternative to the µ that’s being tested. 

    Test µ = 0, alternative is µ > 0:  test for discovery. 

    Test µ =  µ0, alternative is µ = 0:  testing all µ0 gives upper limit. 
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p-value for discovery 
Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
Specified µ	


maximize L	


The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 

For purposes of setting an upper limit on µ use 

where 

cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Random example of a  p-value 
ATLAS, Phys. Lett. B 716 (2012) 1-29 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 

So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  
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I.  Discovery sensitivity for counting experiment with b known: 
 

 (a) 
 

 (b)  Profile likelihood  
                   ratio test & Asimov: 

II.  Discovery sensitivity with uncertainty in b, σb: 
 

 (a) 
  
 (b)  Profile likelihood ratio test & Asimov: 

Expected discovery significance for counting  
experiment with background uncertainty 
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 Counting experiment with known background 
Count a number of events n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Profile likelihood with b uncertain 

This is the well studied “on/off” problem:  Cranmer 2005; 
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,... 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 
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Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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Summary on discovery sensitivity 

For large b, all formulae OK. 

For small b, s/√b and s/√(b+σb
2) overestimate the significance. 

 Could be important in optimization of searches with 
 low background. 

Formula maybe also OK if model is not simple on/off experiment,  
e.g., several background control measurements (checking this). 

Simple formula for expected discovery significance based on 
profile likelihood ratio test and Asimov approximation: 
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Using MC events in a statistical test 
Prototype analysis – count n events where signal may be present: 

 n ~ Poisson(µs + b) 
s = expected events from nominal signal model (regard as known)  
b = expected background (nuisance parameter) 
µ = strength parameter (parameter of interest) 
Ideal – constrain background b with a data control measurement m, 
scale factor τ (assume known) relates control and search regions: 

 m ~ Poisson(τb) 

Reality – not always possible to construct data control sample, 
sometimes take prediction for b from MC. 
From a statistical perspective, can still regard number of MC 
events found as m ~ Poisson(τb) (really should use binomial,  
but here Poisson good approx.)  Scale factor is τ = LMC/Ldata. 
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MC events with weights 
But, some MC events come with an associated weight, either from 
generator directly or because of reweighting for efficiency, pile-up. 

 Outcome of experiment is:  n, m, w1,..., wm 

How to use this info to construct statistical test of µ? 

“Usual” (?) method is to construct an estimator for b: 
 

and include this with a least-squares constraint, e.g., the χ2 gets 
an additional term like 
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Case where m is small (or zero) 
Using least-squares like this assumes     ~ Gaussian, which is OK  
for sufficiently large m because of the Central Limit Theorem. 

But    may not be Gaussian distributed if e.g. 
 m is very small (or zero),  
 the distribution of weights has a long tail. 

Hypothetical example: 
 m  = 2, w1 = 0.1307, w2 = 0.0001605,    
      = 0.0007 ± 0.0030 
 n = 1 (!) 

Correct procedure is to treat m ~ Poisson (or binomial).  And if  
the events have weights, these constitute part of the measurement,  
and so we need to make an assumption about their distribution. 

b̂

b̂

b̂
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Constructing a statistical test of µ 
As an example, suppose we want to test the background-only 
hypothesis (µ=0) using the profile likelihood ratio statistic 
(see e.g. CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727), 

where 

From the observed value of q0,  
the p-value of the hypothesis is: 

So we need to know the distribution of the data (n, m, w1,..., wm), 
i.e., the likelihood, in two places: 

 1)  to define the likelihood ratio for the test statistic 
 2)  for f(q0|0) to get the p-value   
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Normal distribution of weights 
Suppose w ~ Gauss (ω, σw).  The full likelihood function is 

The log-likelihood can be written: 

Only depends on weights through: 
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Log-normal distribution for weights 
Depending on the nature/origin of the weights, we may know: 

 w(x) ≥ 0, 
 distribution of w could have a long tail. 

So w ~ log-normal could be a more realistic model. 

I.e, let l = ln w, then l ~ Gaussian(λ, σl), and the log-likelihood is 

where λ = E[l] and ω = E[w] = exp(λ + σl
2/2). 

Need to record n, m,  Σi ln wi and Σi ln2 wi. 
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Normal distribution for  b̂
For m > 0 we can define the estimator for b 

If we assume    ~ Gaussian, then the log-likelihood is  b̂

Important simplification:  L only depends on parameter of  
interest µ and single nuisance parameter b. 

Ordinarily would only use this Ansatz when Prob(m=0) negligible. 
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Toy weights for test of procedure 
Suppose we wanted to generate events according to 

Suppose we couldn’t do this, and only could generate x following  

and for each event we also obtain a weight 

In this case the weights follow: 
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Two sample MC data sets 

case 1:  
a = 5, ξ = 25 
m = 6 
Distribution of w narrow 

case 2:  
a = 5, ξ = 1 
m = 6 
Distribution of w broad 

Suppose n = 17, τ = 1, and  
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Testing µ = 0 using q0 with n = 17 

case 1:  
a = 5, ξ = 25 
m = 6 
Distribution of  
w is narrow 

If distribution of weights is narrow, then all methods result in 
a similar picture:  discovery significance Z ~ 2.3. 
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Testing µ = 0 using q0 with n = 17 (cont.) 

case 2:  
a = 5, ξ = 1 
m = 6 
Distribution of  
w is broad 

If there is a broad distribution of weights, then: 

1)   If true w ~ 1/w, then assuming w ~ normal gives too tight of 
     constraint on b and thus overestimates the discovery significance. 

2)   If test statistic is sensitive to tail of w distribution (i.e., based 
     on log-normal likelihood), then discovery significance reduced. 

Best option above would be to assume w ~ log-normal, both for 
definition of q0 and f(q0|0), hence Z = 0.863. 
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Summary on weighted MC 
Treating MC data as “real” data, i.e., n ~ Poisson, incorporates  
the statistical error due to limited size of sample. 

Then no problem if zero MC events observed, no issue of how 
to deal with 0 ± 0 for background estimate. 

If the MC events have weights, then some assumption must be 
made about this distribution.   

 If large sample, Gaussian should be OK,  

 if sample small consider log-normal. 

See draft note for more info and also treatment of weights = ±1  
(e.g., MC@NLO). 

www.pp.rhul.ac.uk/~cowan/stat/notes/weights.pdf 
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Summary and conclusions 
Statistical methods continue to play a crucial role in HEP 
analyses; recent Higgs discovery is an important example. 

HEP has focused on frequentist tests for both p-values and limits; 
many tools developed, e.g.,  

 asymptotic distributions of tests statistics, 
 (CCGV arXiv:1007.1727, Eur Phys. J C 71(2011) 1544; 
 recent extension (CCGV) in arXiv:1210:6948), 

 analyses using weighted MC events, 

 simple corrections for Look-Elsewhere Effect,... 

Many other questions untouched today, e.g., 

 Use of multivariate methods for searches 

 Use of Bayesian methods for both limits and discovery 
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Extra slides 
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The Look-Elsewhere Effect 

Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.	


The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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Local p-value 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0 and is called the local p-value. 
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Global p-value 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Approximate correction for LEE 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show the p-values are approximately related by 

where 〈N(c)〉 is the mean number “upcrossings” of   
tfix = -2ln λ  in the fit range based on a threshold 

and where Zlocal = Φ-1(1 – plocal) is the local significance. 
So we can either carry out the full floating-mass analysis (e.g.  
use MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 

〈N(c)〉 can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires 〈N(c)〉, 
the mean number  “upcrossings” of tfix = -2ln λ in the fit range based  
on a threshold c = tfix= Zfix

2. 
  

In this way 〈N(c)〉 can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 



G. Cowan  Sheffield seminar / 21 November 2012 52 

Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 

Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355 
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Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of signal (“spurious exclusion”) 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 

Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 

Why 5 sigma? 
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But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 

Why 5 sigma (cont.)? 


