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Outline 
Two issues of practical importance in recent LHC analyses: 
1)  In many searches for new signal processes, estimates of 
rates of some background components often based on Monte Carlo 
with weighted events.  Some care (and assumptions) are required 
to assess the effect of the finite MC sample on the result of the test. 

2)  A measure of discovery sensitivity is often used to plan a 
future analysis, e.g., s/√b, gives approximate expected discovery 
significance (test of s = 0) when counting n ~ Poisson(s+b).  A  
measure of discovery significance is proposed that takes into  
account uncertainty in the background rate. 
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Using MC events in a statistical test 
Prototype analysis – count n events where signal may be present: 

 n ~ Poisson(µs + b) 
s = expected events from nominal signal model (regard as known)  
b = expected background (nuisance parameter) 
µ = strength parameter (parameter of interest) 
Ideal – constrain background b with a data control measurement m, 
scale factor τ (assume known) relates control and search regions: 

 m ~ Poisson(τb) 

Reality – not always possible to construct data control sample, 
sometimes take prediction for b from MC. 
From a statistical perspective, can still regard number of MC 
events found as m ~ Poisson(τb) (really should use binomial,  
but here Poisson good approx.)  Scale factor is τ = LMC/Ldata. 
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MC events with weights 
But, some MC events come with an associated weight, either from 
generator directly or because of reweighting for efficiency, pile-up. 

 Outcome of experiment is:  n, m, w1,..., wm 

How to use this info to construct statistical test of µ? 

“Usual” (?) method is to construct an estimator for b: 
 

and include this with a least-squares constraint, e.g., the χ2 gets 
an additional term like 
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Case where m is small (or zero) 
Using least-squares like this assumes     ~ Gaussian, which is OK  
for sufficiently large m because of the Central Limit Theorem. 

But    may not be Gaussian distributed if e.g. 
 m is very small (or zero),  
 the distribution of weights has a long tail. 

Hypothetical example: 
 m  = 2, w1 = 0.1307, w2 = 0.0001605,    
      = 0.0007 ± 0.0030 
 n = 1 (!) 

Correct procedure is to treat m ~ Poisson (or binomial).  And if  
the events have weights, these constitute part of the measurement,  
and so we need to make an assumption about their distribution. 

b̂

b̂

b̂
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Constructing a statistical test of µ 
As an example, suppose we want to test the background-only 
hypothesis (µ=0) using the profile likelihood ratio statistic 
(see e.g. CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727), 

where 

From the observed value of q0,  
the p-value of the hypothesis is: 

So we need to know the distribution of the data (n, m, w1,..., wm), 
i.e., the likelihood, in two places: 

 1)  to define the likelihood ratio for the test statistic 
 2)  for f(q0|0) to get the p-value   
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Normal distribution of weights 
Suppose w ~ Gauss (ω, σw).  The full likelihood function is 

The log-likelihood can be written: 

Only depends on weights through: 
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Log-normal distribution for weights 
Depending on the nature/origin of the weights, we may know: 

 w(x) ≥ 0, 
 distribution of w could have a long tail. 

So w ~ log-normal could be a more realistic model. 

I.e, let l = ln w, then l ~ Gaussian(λ, σl), and the log-likelihood is 

where λ = E[l] and ω = E[w] = exp(λ + σl
2/2). 

Need to record n, m,  Σi ln wi and Σi ln2 wi. 
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Normal distribution for  b̂
For m > 0 we can define the estimator for b 

If we assume    ~ Gaussian, then the log-likelihood is  b̂

Important simplification:  L only depends on parameter of  
interest µ and single nuisance parameter b. 

Ordinarily would only use this Ansatz when Prob(m=0) negligible. 
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Toy weights for test of procedure 
Suppose we wanted to generate events according to 

Suppose we couldn’t do this, and only could generate x following  

and for each event we also obtain a weight 

In this case the weights follow: 
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Two sample MC data sets 

case 1:  
a = 5, ξ = 25 
m = 6 
Distribution of w narrow 

case 2:  
a = 5, ξ = 1 
m = 6 
Distribution of w broad 

Suppose n = 17, τ = 1, and  
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Testing µ = 0 using q0 with n = 17 

case 1:  
a = 5, ξ = 25 
m = 6 
Distribution of  
w is narrow 

If distribution of weights is narrow, then all methods result in 
a similar picture:  discovery significance Z ~ 2.3. 
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Testing µ = 0 using q0 with n = 17 (cont.) 

case 2:  
a = 5, ξ = 1 
m = 6 
Distribution of  
w is broad 

If there is a broad distribution of weights, then: 

1)   If true w ~ 1/w, then assuming w ~ normal gives too tight of 
     constraint on b and thus overestimates the discovery significance. 

2)   If test statistic is sensitive to tail of w distribution (i.e., based 
     on log-normal likelihood), then discovery significance reduced. 

Best option above would be to assume w ~ log-normal, both for 
definition of q0 and f(q0|0), hence Z = 0.863. 
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Summary on weighted MC 
Treating MC data as “real” data, i.e., n ~ Poisson, incorporates  
the statistical error due to limited size of sample. 

Then no problem if zero MC events observed, no issue of how 
to deal with 0 ± 0 for background estimate. 

If the MC events have weights, then some assumption must be 
made about this distribution.   

 If large sample, Gaussian should be OK,  

 if sample small consider log-normal. 

See draft note for more info and also treatment of weights = ±1  
(e.g., MC@NLO). 

www.pp.rhul.ac.uk/~cowan/stat/notes/weights.pdf 
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I.  Discovery sensitivity for counting experiment with b known: 
 

 (a) 
 

 (b)  Profile likelihood  
                   ratio test & Asimov: 

II.  Discovery sensitivity with uncertainty in b, σb: 
 

 (a) 
  
 (b)  Profile likelihood ratio test & Asimov: 

Expected discovery significance for counting  
experiment with background uncertainty 
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 Counting experiment with known background 
Count a number of events n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s=0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Profile likelihood with b uncertain 

This is the well studied “on/off” problem:  Cranmer 2005; 
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,... 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 



G. Cowan  SLAC Statistics Meeting / 4-6 June 2012 / Two Developments 25 

Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Summary on discovery sensitivity 

For large b, all formulae OK. 

For small b, s/√b and s/√(b+σb
2) overestimate the significance. 

 Could be important in optimization of searches with 
 low background. 

Formula maybe also OK if model is not simple on/off experiment,  
e.g., several background control measurements (check this). 

Simple formula for expected discovery significance based on 
profile likelihood ratio test and Asimov approximation: 
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Extra slides 
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Ingredients for profile likelihood ratio 

To construct the profile likelihood ratio we need the estimators: 

and in particular to test for discovery (s = 0),  
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MC weights due to pile-up 

The effect of pile-up is 
included in MC sim- 
ulations using a best  
guess for the rate, which 
depends e.g. on beam 
intensity. 

If this guess turns out to be 
incorrect, the MC events 
are reweighted to correct 
the distribution of the 
number of collisions per  
bunch crossing. 

Each pp bunch crossing at the LHC results in a number of pp 
collisions  (11 in the one below); this is “pile-up”. 
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Using sensitivity to optimize a cut 



G. Cowan  SLAC Statistics Meeting / 4-6 June 2012 / Two Developments 32 

Distributions of q0 


