Classical interval estimation, limits systematics and beyond - Part I

IN2P3 School of Statistics Zoom / 19 January 2021

https://indico.in2p3.fr/event/20220/

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Outline

- Interval estimation
- Confidence region using Wilks' theorem
- Limits for Poisson parameter

Recap of hypothesis tests

Consider test of a parameter μ , e.g., proportional to cross section. Result of measurement is data x, whose pdf depends on μ .

To define test of μ , specify *critical region* w_{μ} , such that probability to find $x \in w_{\mu}$ is not greater than α (the *size* or *significance level*):

Power of test

In general there are an infinite number of possible critical regions that give the same size α .

To define the test of H_0 , consider a relevant alternative H_1 and use it to motivate where to place the critical region.

Roughly speaking, place the critical region where there is a low probability (α) to be found if H_0 is true, but high if H_1 is true:

Test statistic for *p*-value

Often define the test with a statistic $q_{\mu}(x)$ such that the boundary of the critical region is $q_{\mu}(x) = c_{\alpha}$ for some constant c_{α} .

For examples of statistics based on the profile likelihood ratio, see, e.g., CCGV, EPJC 71 (2011) 1554; arXiv:1007.1727.

Usually define q_{μ} such that higher values represent increasing incompatibility between the data and the hypothesized μ , so that the *p*-value of μ is

$$p_{\mu} = \int_{q_{\mu,\text{obs}}}^{\infty} f(q_{\mu}|\mu) \, dq_{\mu}$$

observed value of q_{μ} pdf of q_{μ} assuming μ

Equivalent formulation of test: reject μ if $p_{\mu} \leq \alpha$.

Confidence intervals by inverting a test

In addition to a 'point estimate' of a parameter we should report an interval reflecting its statistical uncertainty.

Confidence intervals for a parameter θ can be found by defining a test of the hypothesized value θ (do this for all θ):

Specify values of the data that are 'disfavoured' by θ (critical region) such that $P(\text{data in critical region} | \theta) \le \alpha$ for a prespecified α , e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ .

Now invert the test to define a confidence interval as:

set of θ values that are not rejected in a test of size α (confidence level CL is $1 - \alpha$).

Relation between confidence interval and *p*-value

Equivalently we can consider a significance test for each hypothesized value of θ , resulting in a *p*-value, p_{θ} .

If $p_{\theta} \leq \alpha$, then we reject θ .

The confidence interval at $CL = 1 - \alpha$ consists of those values of θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which $p_{\theta} > \alpha$.

In practice find by setting $p_{\theta} = \alpha$ and solve for θ .

For a multidimensional parameter space $\theta = (\theta_1, \dots, \theta_M)$ use same idea – result is a confidence "region" with boundary determined by $p_{\theta} = \alpha$.

Coverage probability of confidence interval

If the true value of θ is rejected, then it's not in the confidence interval. The probability for this is by construction (equality for continuous data):

 $P(\text{reject } \theta | \theta) \leq \alpha = \text{type-I error rate}$

Therefore, the probability for the interval to contain or "cover" θ is

P(conf. interval "covers" $\theta | \theta \ge 1 - \alpha$

This assumes that the set of θ values considered includes the true value, i.e., it assumes the composite hypothesis $P(\mathbf{x}|H,\theta)$.

Example: upper limit on mean of Gaussian

When we test the parameter, we should take the critical region to maximize the power with respect to the relevant alternative(s).

Example: $x \sim \text{Gauss}(\mu, \sigma)$ (take σ known)

Test $H_0: \mu = \mu_0$ versus the alternative $H_1: \mu < \mu_0$

 \rightarrow Put w_{μ} at region of x-space characteristic of low μ (i.e. at low x)

Equivalently, take the *p*-value to be

$$p_{\mu_0} = P(x \le x_{\text{obs}} | \mu_0) = \int_{-\infty}^{x_{\text{obs}}} \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu_0)^2/2\sigma^2} \, dx = \Phi\left(\frac{x_{\text{obs}} - \mu_0}{\sigma}\right)$$

Upper limit on Gaussian mean (2)

To find confidence interval, repeat for all μ_0 , i.e., set $p_{\mu 0} = \alpha$ and solve for μ_0 to find the interval's boundary

$$\mu_0 \to \mu_{\rm up} = x_{\rm obs} - \sigma \Phi^{-1}(\alpha) = x_{\rm obs} + \sigma \Phi^{-1}(1 - \alpha)$$

This is an upper limit on μ , i.e., higher μ have even lower p-value and are in even worse agreement with the data.

Usually use $\Phi^{-1}(\alpha) = -\Phi^{-1}(1-\alpha)$ so as to express the upper limit as x_{obs} plus a positive quantity. E.g. for $\alpha = 0.05$, $\Phi^{-1}(1-0.05) = 1.64$.

Upper limit on Gaussian mean (3)

 μ_{up} = the hypothetical value of μ such that there is only a probability α to find $x < x_{obs}$.

1-vs. 2-sided intervals

Now test: $H_0: \mu = \mu_0$ versus the alternative $H_1: \mu \neq \mu_0$

I.e. we consider the alternative to μ_0 to include higher and lower values, so take critical region on both sides:

Result is a "central" confidence interval [μ_{lo}, μ_{up}]:

$$\mu_{\rm lo} = x_{\rm obs} - \sigma \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \qquad \text{E.g. for } \alpha = 0.05$$
$$\mu_{\rm up} = x_{\rm obs} + \sigma \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \qquad \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) = 1.96 \approx 2$$

Note upper edge of two-sided interval is higher (i.e. not as tight of a limit) than obtained from the one-sided test.

G. Cowan / RHUL Physics

On the meaning of a confidence interval

Often we report the confidence interval [a,b] together with the point estimate as an "asymmetric error bar", e.g.,

Does this mean P(80.00 < θ < 80.56) = 68.3%? No, not for a frequentist confidence interval. The parameter θ does not fluctuate upon repetition of the measurement; the endpoints of the interval do, i.e., the endpoints of the interval fluctuate (they are functions of data):

$$P(alx) L \Theta L b(x)) = 1 - \alpha$$

G. Cowan / RHUL Physics

Approximate confidence intervals/regions from the likelihood function

Suppose we test parameter value(s) $\theta = (\theta_1, ..., \theta_n)$ using the ratio

$$\lambda(\theta) = \frac{L(\theta)}{L(\hat{\theta})} \qquad \qquad 0 \le \lambda(\theta) \le 1$$

Lower $\lambda(\theta)$ means worse agreement between data and hypothesized θ . Equivalently, usually define

$$t_{\theta} = -2\ln\lambda(\theta)$$

so higher t_{θ} means worse agreement between θ and the data.

p-value of θ therefore

$$p_{\theta} = \int_{t_{\theta,\text{obs}}}^{\infty} f(t_{\theta}|\theta) \, dt_{\theta}$$
need pdf

Confidence region from Wilks' theorem

Wilks' theorem says (in large-sample limit and provided certain conditions hold...)

 $f(t_{\theta}|\theta) \sim \chi_n^2 \qquad \begin{array}{l} \text{chi-square dist. with # d.o.f. =} \\ \text{# of components in } \theta = (\theta_1, ..., \theta_n). \end{array}$

Assuming this holds, the *p*-value is

$$p_{m{ heta}} = 1 - F_{\chi^2_n}(t_{m{ heta}}) \quad \leftarrow \text{set equal to } lpha$$

To find boundary of confidence region set $p_{\theta} = \alpha$ and solve for t_{θ} :

$$t_{\theta} = F_{\chi_n^2}^{-1}(1-\alpha)$$

Recall also

$$t_{\theta} = -2\ln\frac{L(\theta)}{L(\hat{\theta})}$$

G. Cowan / RHUL Physics

Confidence region from Wilks' theorem (cont.)

i.e., boundary of confidence region in θ space is where

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2}F_{\chi_n^2}^{-1}(1-\alpha)$$

For example, for $1 - \alpha = 68.3\%$ and n = 1 parameter,

$$F_{\chi_1^2}^{-1}(0.683) = 1$$

and so the 68.3% confidence level interval is determined by

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2}$$

Same as recipe for finding the estimator's standard deviation, i.e.,

 $[\hat{\theta} - \sigma_{\hat{\theta}}, \hat{\theta} + \sigma_{\hat{\theta}}]$ is a 68.3% CL confidence interval.

Example of interval from $\ln L(\theta)$

For n=1 parameter, CL = 0.683, $Q_{\alpha} = 1$.

Multiparameter case

For increasing number of parameters, $CL = 1 - \alpha$ decreases for confidence region determined by a given

$$Q_{\alpha} = F_{\chi_n^2}^{-1}(1-\alpha)$$

Q_{lpha}	$1-\alpha$					
	n = 1	n = 2	n = 3	n = 4	n = 5	
1.0	0.683	0.393	0.199	0.090	0.037	
2.0	0.843	0.632	0.428	0.264	0.151	
4.0	0.954	0.865	0.739	0.594	0.451	
9.0	0.997	0.989	0.971	0.939	0.891	

Multiparameter case (cont.)

Equivalently, Q_{α} increases with *n* for a given $CL = 1 - \alpha$.

$1 - \alpha$	\widehat{Q}_{lpha}						
	n = 1	n = 2	n = 3	n = 4	n = 5		
0.683	1.00	2.30	3.53	4.72	5.89		
0.90	2.71	4.61	6.25	7.78	9.24		
0.95	3.84	5.99	7.82	9.49	11.1		
0.99	6.63	9.21	11.3	13.3	15.1		

Frequentist upper limit on Poisson parameter

Consider again the case of observing $n \sim \text{Poisson}(s + b)$. Suppose b = 4.5, $n_{\text{obs}} = 5$. Find upper limit on s at 95% CL. Relevant alternative is s = 0 (critical region at low n) p-value of hypothesized s is $P(n \le n_{\text{obs}}; s, b)$ Upper limit s_{up} at $\text{CL} = 1 - \alpha$ found from

$$\begin{aligned} \alpha &= P(n \le n_{\text{obs}}; s_{\text{up}}, b) = \sum_{n=0}^{n_{\text{obs}}} \frac{(s_{\text{up}} + b)^n}{n!} e^{-(s_{\text{up}} + b)} \\ s_{\text{up}} &= \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n_{\text{obs}} + 1)) - b \\ &= \frac{1}{2} F_{\chi^2}^{-1} (0.95; 2(5 + 1)) - 4.5 = 6.0 \end{aligned}$$

G. Cowan / RHUL Physics

$n \sim \text{Poisson}(s+b)$: frequentist upper limit on s

For low fluctuation of *n*, formula can give negative result for s_{up} ; i.e. confidence interval is empty; all values of $s \ge 0$ have $p_s \le \alpha$.

G. Cowan / RHUL Physics

Limits near a boundary of the parameter space

Suppose e.g. b = 2.5 and we observe n = 0.

If we choose CL = 0.9, we find from the formula for s_{up}

$$s_{\rm up} = -0.197$$
 (CL = 0.90)

Physicist:

We already knew $s \ge 0$ before we started; can't use negative upper limit to report result of expensive experiment!

Statistician:

The interval is designed to cover the true value only 90% of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which one has very little experimental sensitivity, e.g., very small *s*.

Expected limit for s = 0

Physicist: I should have used CL = 0.95 — then $s_{up} = 0.496$

Even better: for CL = 0.917923 we get $s_{up} = 10^{-4}$!

Reality check: with b = 2.5, typical Poisson fluctuation in n is at least $\sqrt{2.5} = 1.6$. How can the limit be so low?

The Bayesian approach to limits

In Bayesian statistics need to start with 'prior pdf' $\pi(\theta)$, this reflects degree of belief about θ before doing the experiment.

Bayes' theorem tells how our beliefs should be updated in light of the data *x*:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') d\theta'} \propto L(x|\theta)\pi(\theta)$$

Integrate posterior pdf $p(\theta|x)$ to give interval with any desired probability content.

For e.g. $n \sim \text{Poisson}(s+b)$, 95% CL upper limit on *s* from

$$0.95 = \int_{-\infty}^{s_{\rm up}} p(s|n) \, ds$$

Bayesian prior for Poisson parameter

Include knowledge that $s \ge 0$ by setting prior $\pi(s) = 0$ for s < 0. Could try to reflect 'prior ignorance' with e.g.

$$\pi(s) = \begin{cases} 1 & s \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Not normalized; can be OK provided L(s) dies off quickly for large s.

Not invariant under change of parameter — if we had used instead a flat prior for a nonlinear function of s, then this would imply a non-flat prior for s.

Doesn't really reflect a reasonable degree of belief, but often used as a point of reference; or viewed as a recipe for producing an interval whose frequentist properties can be studied (e.g., coverage probability, which will depend on true *s*).

Bayesian upper limit with flat prior for s

Put Poisson likelihood and flat prior into Bayes' theorem:

$$p(s|n) \propto \frac{(s+b)^n}{n!} e^{-(s+b)} \qquad (s \ge 0)$$

Normalize to unit area:

$$p(s|n) = \frac{(s+b)^n e^{-(s+b)}}{\Gamma(b, n+1)} \longleftarrow \text{ upper incomplete gamma function}$$

Upper limit s_{up} determined by requiring

$$1 - \alpha = \int_0^{s_{\rm up}} p(s|n) \, ds$$

G. Cowan / RHUL Physics

Bayesian interval with flat prior for *s*

Solve to find limit s_{up} :

$$s_{\rm up} = \frac{1}{2} F_{\chi^2}^{-1} [p, 2(n+1)] - b$$

where

$$p = 1 - \alpha \left(1 - F_{\chi^2} \left[2b, 2(n+1) \right] \right)$$

For special case b = 0, Bayesian upper limit with flat prior numerically same as one-sided frequentist case ('coincidence').

Bayesian interval with flat prior for s

For b > 0 Bayesian limit is everywhere greater than the (one sided) frequentist upper limit.

Never goes negative. Doesn't depend on *b* if n = 0.

G. Cowan / RHUL Physics

Priors from formal rules

Last time we took the prior for a Poisson mean to be constant to reflect a lack of prior knowledge; we noted this was not invariant under change of parameter.

Because of difficulties in encoding a vague degree of belief in a prior, one often attempts to derive the prior from formal rules, e.g., to satisfy certain invariance principles or to provide maximum information gain for a certain set of measurements.

Often called "objective priors" Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent possible extreme cases).

In Objective Bayesian analysis, can use the intervals in a frequentist way, i.e., regard Bayes' theorem as a recipe to produce an interval with a given coverage probability.

G. Cowan / RHUL Physics

Priors from formal rules (cont.)

For a review of priors obtained by formal rules see, e.g.,

Robert E. Kass and Larry Wasserman, *The Selection of Prior Distributions by Formal Rules*, J. Am. Stat. Assoc., Vol. 91, No. 435, pp. 1343-1370 (1996).

Formal priors have not been widely used in Particle Physics, but there has been interest in this direction, especially the reference priors of Bernardo and Berger; see e.g.

L. Demortier, S. Jain and H. Prosper, *Reference priors for high energy physics*, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111.

D. Casadei, *Reference analysis of the signal + background model in counting experiments*, JINST 7 (2012) 01012; arXiv:1108.4270.

Jeffreys prior

According to Jeffreys' rule, take prior according to

$$\pi(\boldsymbol{\theta}) \propto \sqrt{\det(I(\boldsymbol{\theta}))}$$

where

$$I_{ij}(\boldsymbol{\theta}) = -E\left[\frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = -\int \frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} L(\boldsymbol{x}|\boldsymbol{\theta}) \, d\boldsymbol{x}$$

is the Fisher information matrix.

One can show that this leads to inference that is invariant under a transformation of parameters in the following sense:

Start with the Jeffreys prior for θ : $\pi_{\theta}(\theta) \sim \sqrt{\det I(\theta)}$

Use it in Bayes' theorem to find:

$$P(\theta|\mathbf{x}) \propto P(\mathbf{x}|\theta)\pi_{\theta}(\theta)$$

Jeffreys prior (2)

Now consider a function $\eta(\theta)$. The posterior for η is

$$P(\eta | \mathbf{x}) = P(\theta | \mathbf{x}) \left| \frac{d\theta}{d\eta} \right|$$

Alternatively, start with η and use its Jeffreys' prior:

$$\pi_{\eta}(\eta) \propto \sqrt{\det I(\eta)}$$

Use this in Bayes' theorem: $P(\eta | \mathbf{x}) \propto P(\mathbf{x} | \eta) \pi_{\eta}(\eta)$

One can show that Jeffreys' prior results in the same $P(\eta | \mathbf{x})$ in both cases. For details (single-parameter case) see: http://www.pp.rhul.ac.uk/~cowan/stat/notes/JeffreysInvariance.pdf

Jeffreys prior for Poisson mean

Suppose $n \sim \text{Poisson}(\mu)$. To find the Jeffreys' prior for μ ,

$$L(n|\mu) = \frac{\mu^n}{n!} e^{-\mu} \qquad \qquad \frac{\partial^2 \ln L}{\partial \mu^2} = -\frac{n}{\mu^2}$$

$$I = -E\left[\frac{\partial^2 \ln L}{\partial \mu^2}\right] = \frac{E[n]}{\mu^2} = \frac{1}{\mu}$$

$$\pi(\mu) \propto \sqrt{I(\mu)} = \frac{1}{\sqrt{\mu}}$$

So e.g. for $\mu = s + b$, this means the prior $\pi(s) \sim 1/\sqrt{(s+b)}$, which depends on *b*. But this is not designed as a degree of belief about *s*.

Posterior pdf for Poisson mean

From Bayes' theorem, $p(\mu|n) \propto \mu^n e^{-\mu} \pi(\mu)$

In both cases, posterior is special case of gamma distribution.

Upper limit for Poisson mean

To find upper limit at $CL = 1-\alpha$, solve

$$1 - \alpha = \int_0^{\mu_{\rm up}} p(\mu|n) \, d\mu$$

Jeffreys prior:
$$\mu_{up} = P^{-1}(n + \frac{1}{2}, 1 - \alpha) = 7.03$$

Flat prior: $\mu_{up} = P^{-1}(n + 1, 1 - \alpha) = 7.75$ $n=3,$
CL=0.95

where P^{-1} is the inverse of the normalized lower incomplete gamma function (see scipy.special)

$$P(a, \mu_{\rm up}) = \frac{1}{\Gamma(a)} \int_0^{\mu_{\rm up}} \mu^{a-1} e^{-\mu} \, d\mu$$

Choosing a critical region

To construct a test of a hypothesis H_0 , we can ask what are the relevant alternatives for which one would like to have a high power.

Maximize power wrt H_1 = maximize probability to reject H_0 if H_1 is true.

Often such a test has a high power not only with respect to a specific point alternative but for a class of alternatives. E.g., using a measurement $x \sim \text{Gauss}(\mu, \sigma)$ we may test

 $H_0: \mu = \mu_0$ versus the composite alternative $H_1: \mu > \mu_0$

We get the highest power with respect to any $\mu > \mu_0$ by taking the critical region $x \ge x_c$ where the cut-off x_c is determined by the significance level such that

 $\alpha = P(x \ge x_{\rm c} | \mu_0).$

G. Cowan / RHUL Physics

Test of $\mu = \mu_0$ vs. $\mu > \mu_0$ with $x \sim \text{Gauss}(\mu, \sigma)$

Standard Gaussian cumulative distribution

$$\alpha = 1 - \Phi\left(\frac{x_{\rm c} - \mu_0}{\sigma}\right)$$

$$x_{\rm c} = \mu_0 + \sigma \Phi^{-1} (1 - \alpha)$$

Standard Gaussian quantile

$$power = 1 - \beta = P(x > x_c | \mu) =$$

 $1 - \Phi\left(\frac{\mu_0 - \mu}{\sigma} + \Phi^{-1}(1 - \alpha)\right)$

G. Cowan / RHUL Physics

Choice of critical region based on power (3)

But we might consider $\mu < \mu_0$ as well as $\mu > \mu_0$ to be viable alternatives, and choose the critical region to contain both high and low x (a two-sided test).

> New critical region now gives reasonable power for $\mu < \mu_0$, but less power for $\mu > \mu_0$ than the original one-sided test.

G. Cowan / RHUL Physics

No such thing as a model-independent test In general we cannot find a single critical region that gives the maximum power for all possible alternatives (no "Uniformly Most Powerful" test).

In HEP we often try to construct a test of

*H*₀ : Standard Model (or "background only", etc.)

such that we have a well specified "false discovery rate",

 α = Probability to reject H_0 if it is true,

and high power with respect to some interesting alternative,

 H_1 : SUSY, Z', etc.

But there is no such thing as a "model independent" test. Any statistical test will inevitably have high power with respect to some alternatives and less power with respect to others.

G. Cowan / RHUL Physics

p-value from test statistic

If e.g. we define the region of less or eq. compatibility to be $t(x) \ge t_{obs}$ then the *p*-value of *H* is

$$p_H = \int_{t_{\text{obs}}}^{\infty} f(t|H) \, dt = \int_{\{\mathbf{x}: t(\mathbf{x}) \ge t_{\text{obs}}\}} f(\mathbf{x}|H) \, d\mathbf{x}$$

G. Cowan / RHUL Physics

Distribution of the *p*-value

The *p*-value is a function of the data, and is thus itself a random variable with a given distribution. Suppose the *p*-value of *H* is found from a test statistic t(x) as

$$p_H = \int_t^\infty f(t'|H)dt'$$

The pdf of p_H under assumption of H is

$$g(p_H|H) = \frac{f(t|H)}{|\partial p_H/\partial t|} = \frac{f(t|H)}{f(t|H)} = 1 \quad (0 \le p_H \le 1)$$

In general for continuous data, under assumption of H, $p_H \sim \text{Uniform}[0,1]$ and is concentrated toward zero for some (broad) class of alternatives.

G. Cowan / RHUL Physics