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Outline

• Interval estimation

• Confidence region using Wilks’ theorem

• Limits for Poisson parameter
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Recap of hypothesis tests
Consider test of a parameter μ, e.g., proportional to cross section.

Result of measurement is data x, whose pdf depends on μ.

To define test of μ, specify critical region wμ, such that probability
to find x ∈ wμ is not greater than α (the size or significance level):

Often use, e.g., α = 0.05.

If observe x ∈ wμ, reject μ.

Equivalently define a p-value pμ
such that the critical region 
corresponds to pμ ≤ α. 

data space Ω

critical region w
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Power of test
In general there are an infinite number of possible critical regions 
that give the same size α.

To define the test of H0, consider a relevant alternative H1 and use 
it to motivate where to place the critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:



5G. Cowan / RHUL Physics SOS 2021 / lecture 1

Test statistic for p-value
Often define the test with a statistic qμ(x) such that the boundary
of the critical region is qμ(x) = cα for some constant cα.

For examples of statistics based on the profile likelihood ratio,
see, e.g., CCGV, EPJC 71 (2011) 1554;  arXiv:1007.1727.

Usually define qμ such that higher values represent increasing 
incompatibility between the data and the hypothesized μ, so that 
the p-value of μ is

Equivalent formulation of test:  reject μ if pμ ≤ α.

pdf of qμ assuming μobserved value of qμ
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Confidence intervals by inverting a test
In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Confidence intervals for a parameter θ can be found by 
defining a test of the hypothesized value θ (do this for all θ): 

Specify values of the data that are ‘disfavoured’ by θ
(critical region) such that P(data in critical region|θ) ≤ α
for a prespecified α, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ.

Now invert the test to define a confidence interval as:

set of θ values that are not rejected in a test of size α
(confidence level CL is 1- α).
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Relation between confidence interval and p-value
Equivalently we can consider a significance test for each
hypothesized value of θ, resulting in a p-value, pθ.  

If pθ ≤ α, then we reject θ. 

The confidence interval at CL = 1 – α consists of those values of 
θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which pθ > α. 

In practice find by setting pθ = α and solve for θ.

For a multidimensional parameter space θ = (θ1,... θM) use same 
idea – result is a confidence “region” with boundary determined 
by pθ = α.
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Coverage probability of confidence interval
If the true value of θ is rejected, then it’s not in the confidence 
interval.  The probability for this is by construction (equality for 
continuous data):

P(reject θ|θ) ≤ α = type-I error rate

Therefore, the probability for the interval to contain or “cover” θ is

P(conf. interval “covers” θ|θ) ≥ 1 – α

This assumes that the set of θ values considered includes the true 
value, i.e., it assumes the composite hypothesis P(x|H,θ).
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When we test the parameter, we should take the critical region to 
maximize the power with respect to the relevant alternative(s).  

Example:  x ~ Gauss(μ, σ) (take σ known)

Test H0 : μ = μ0 versus the alternative H1 : μ < μ0

→ Put wμ at region of x-space 
characteristic of low μ (i.e. at low x)

Equivalently, take the p-value to be

Example: upper limit on mean of Gaussian
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Upper limit on Gaussian mean (2)
To find confidence interval, repeat for all μ0, i.e., set pμ0 = α and 
solve for μ0 to find the interval’s boundary

This is an upper limit on μ, i.e., higher μ have even lower p-value 
and are in even worse agreement with the data.

Usually use Φ-1(α) = -Φ-1(1-α) so as to express the upper limit as 
xobs plus a positive quantity. E.g. for α = 0.05, Φ-1(1-0.05) = 1.64.
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μup = the hypothetical value of μ such that there is only a 
probability α to find x < xobs.

Upper limit on Gaussian mean (3)
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1- vs. 2-sided intervals
Now test: H0 : μ = μ0 versus the alternative H1 : μ ≠ μ0

Result is a “central” confidence interval [μlo, μup]:

I.e. we consider the 
alternative to μ0 to include 
higher and lower values, 
so take critical region on 
both sides:

E.g. for  

Note upper edge of two-sided interval is higher (i.e. not as tight
of a limit) than obtained from the one-sided test.
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On the meaning of a confidence interval
Often we report the confidence interval [a,b] together with the 
point estimate as an “asymmetric error bar”, e.g.,

E.g. (at CL  = 1 – α = 68.3%):

Does this mean P(80.00 < θ < 80.56) = 68.3%?  No, not for a 
frequentist confidence interval.  The parameter θ does not fluctuate 
upon repetition of the measurement; the endpoints of the interval 
do, i.e., the endpoints of the interval fluctuate (they are functions of 
data): 
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Approximate confidence intervals/regions 
from the likelihood function

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define

so higher tθ means worse agreement between θ and the data.

p-value of θ therefore 

need pdf
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Confidence region from Wilks’ theorem
Wilks’ theorem says (in large-sample limit and provided 
certain conditions hold...)

chi-square dist. with # d.o.f. = 
# of components in θ = (θ1, ..., θn).

Assuming this holds, the p-value is

To find boundary of confidence region set pθ= α and solve for tθ:

Recall also 

← set equal to α
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Confidence region from Wilks’ theorem (cont.)
i.e., boundary of confidence region in θ space is where

For example, for 1 – α = 68.3% and n = 1 parameter,

and so the 68.3% confidence level interval is determined by

Same as recipe for finding the estimator’s standard deviation, i.e.,

is a 68.3% CL confidence interval.
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Example of interval from ln L(θ)
For n=1 parameter, CL = 0.683, Qα = 1.

Our exponential 
example, now with
only n = 5 events.

Can report ML estimate
with approx. confidence
interval from ln Lmax – 1/2
as “asymmetric error bar”:
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Multiparameter case

For increasing number of parameters, CL = 1 – α decreases for
confidence region determined by a given 
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Multiparameter case (cont.)

Equivalently, Qα increases with n for a given CL = 1 – α.
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Frequentist upper limit on Poisson parameter
Consider again the case of observing n ~ Poisson(s + b).

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found from
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n ~ Poisson(s+b):  frequentist upper limit on s
For low fluctuation of n, formula can give negative result for sup; 
i.e. confidence interval is empty;  all values of s ≥ 0 have ps ≤ α.



22G. Cowan / RHUL Physics SOS 2021 / lecture 1

Limits near a boundary of the parameter space
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44



24G. Cowan / RHUL Physics SOS 2021 / lecture 1

The Bayesian approach to limits
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this 
reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf p(θ|x) to give interval with any desired
probability content.  

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from
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Bayesian prior for Poisson parameter

Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0.

Could try to reflect ‘prior ignorance’ with e.g. 

Not normalized; can be OK provided L(s) dies off quickly for large s.

Not invariant under change of parameter — if we had used instead 
a flat prior for a nonlinear function of s, then this would imply a 
non-flat prior for s.

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; or viewed as a recipe for producing an 
interval whose frequentist properties can be studied (e.g., coverage 
probability, which will depend on true s). 
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Bayesian upper limit with flat prior for s
Put Poisson likelihood and flat prior into Bayes’ theorem:

Normalize to unit area:

Upper limit sup determined by requiring 

upper incomplete
gamma function
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Bayesian interval with flat prior for s
Solve to find limit sup:

For special case b = 0, Bayesian upper limit with flat prior
numerically same as one-sided frequentist case (‘coincidence’). 

where 
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Bayesian interval with flat prior for s
For b > 0 Bayesian limit is everywhere greater than the (one 
sided) frequentist upper limit.

Never goes negative.  Doesn’t depend on b if n = 0.
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Priors from formal rules 
Last time we took the prior for a Poisson mean to be constant to 
reflect a lack of prior knowledge; we noted this was not invariant 
under change of parameter.

Because of difficulties in encoding a vague degree of belief
in a prior, one often attempts to derive the prior from formal rules,
e.g., to satisfy certain invariance principles or to provide maximum
information gain for a certain set of measurements.

Often called “objective priors” 
Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent
possible extreme cases).   

In Objective Bayesian analysis, can use the intervals in a
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce
an interval with a given coverage probability. 
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Priors from formal rules (cont.) 
For a review of priors obtained by formal rules see, e.g.,

Formal priors have not been widely used in Particle Physics, but 
there has been interest in this direction, especially the reference 
priors of Bernardo and Berger; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high
energy physics, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111.

D. Casadei, Reference analysis of the signal + background model 
in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270.
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Jeffreys prior
According to Jeffreys’ rule, take prior according to

where

is the Fisher information matrix.

One can show that this leads to inference that is invariant under
a transformation of parameters in the following sense:

Start with the Jeffreys prior for θ:  πθ(θ) ~ √(det I(θ))

Use it in Bayes’ theorem to find:
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Jeffreys prior (2)

Now consider a function η(θ).  The posterior for η is

Alternatively, start with η and use its Jeffreys’ prior:

Use this in Bayes’ theorem:

One can show that Jeffreys’ prior results in the same P(η|x) in 
both cases.  For details (single-parameter case) see:
http://www.pp.rhul.ac.uk/~cowan/stat/notes/JeffreysInvariance.pdf
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Jeffreys prior for Poisson mean

Suppose n ~ Poisson(μ).  To find the Jeffreys’ prior for μ,

So e.g. for μ = s + b, this means the prior π(s) ~ 1/√(s + b),  which 
depends on b.  But this is not designed as a degree of belief  about s.
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Posterior pdf for Poisson mean
From Bayes’ theorem, 

Flat, π(μ) = const.

Jeffreys, π(μ) ~ 1/√μ

In both cases, posterior is special case of gamma distribution.
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Upper limit for Poisson mean

Flat prior:

Jeffreys prior:

= 7.75

= 7.03

where P-1 is the inverse of the normalized lower incomplete 
gamma function (see scipy.special)

To find upper limit at CL = 1-α, solve

n=3,
CL=0.95
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Extra slides



G. Cowan / RHUL Physics SOS 2021 / lecture 1 37

Choosing a critical region
To construct a test of a hypothesis H0, we can ask what are the 
relevant alternatives for which one would like to have a high power.

Maximize power wrt H1 = maximize probability to
reject H0 if H1 is true.

Often such a test has a high power not only with respect to a 
specific point alternative but for a class of alternatives.  
E.g., using a measurement x ~ Gauss (μ, σ) we may test

H0 : μ = μ0 versus the composite alternative H1 : μ > μ0

We get the highest power with respect to any μ > μ0 by taking 
the critical region x ≥ xc where the cut-off xc is determined by 
the significance level such that 

α = P(x ≥xc|μ0).
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Τest of μ = μ0 vs. μ > μ0 with  x ~ Gauss(μ,σ)

Standard Gaussian quantile

Standard Gaussian
cumulative distribution
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Choice of critical region based on power (3)

But we might consider μ < μ0 as 
well as μ > μ0 to be viable 
alternatives, and choose the 
critical region to contain both 
high and low x (a two-sided 
test).

New critical region now 
gives reasonable power 
for μ < μ0, but less power 
for μ > μ0 than the original 
one-sided test.
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No such thing as a model-independent test
In general we cannot find a single critical region that gives the
maximum power for all possible alternatives (no “Uniformly
Most Powerful” test). 

In HEP we often try to construct a test of

H0 : Standard Model (or “background only”, etc.)

such that we have a well specified “false discovery rate”,

α = Probability to reject H0 if it is true,

and high power with respect to some interesting alternative,

H1 : SUSY, Zʹ, etc.

But there is no such thing as a “model independent” test.  Any
statistical test will inevitably have high power with respect to
some alternatives and less power with respect to others.
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p-value from test statistic

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj

surface described by test statistic

If e.g. we define the region of less or eq. compatibility to be t(x) ≥ tobs then 
the p-value of H is
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Distribution of  the p-value
The p-value is a function of the data, and is thus itself a random
variable with a given distribution.  Suppose the p-value of H is 
found from a test statistic t(x) as

The pdf of pH under assumption of H is

In general for continuous data,  under 
assumption of H, pH ~ Uniform[0,1]
and is concentrated toward zero for 
some (broad) class of alternatives. pH

g(pH|H)

0 1

g(pH|H′)


