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Outline

• Nuisance parameters, systematic uncertainties

• Prototype analysis with profile likelihood ratio

• Expected discovery significance (with systematics)
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Systematic uncertainties and nuisance parameters
In general, our model of the data is not perfect:

x

P
(x

|μ
)

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter ↔ systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Profile Likelihood
Suppose we have a likelihood L(μ,θ) = P(x|μ,θ) with  N
parameters of interest μ = (μ1,..., μN) and M nuisance parameters 
θ = (θ1,..., θM).  The “profiled” (or “constrained”) values of θ are:

and the profile likelihood is:

The profile likelihood depends only on the parameters of 
interest; the nuisance parameters are replaced by their profiled 
values.

The profile likelihood can be used to obtain confidence 
intervals/regions for the parameters of interest in the same way 
as one would for all of the parameters from the full likelihood.
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Profile Likelihood Ratio – Wilks theorem
Goal is to test/reject regions of μ space (param. of interest).

Rejecting a point μ should mean pμ ≤ α for all possible values of the 
nuisance parameters θ.

Test μ using the “profile likelihood ratio”:

Let tμ = -2lnλ(μ).  Wilks’ theorem says in large-sample limit:

where the number of degrees of freedom is the number of 
parameters of interest (components of μ).  So p-value for μ is
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Profile Likelihood Ratio – Wilks theorem (2)

The recipe to get confidence regions/intervals for the parameters 
of interest at CL = 1 – α is thus the same as before, simply use the 
profile likelihood:

If we have a large enough data sample to justify use of the
asymptotic chi-square pdf, then if μ is rejected, it is rejected for 
any values of the nuisance parameters.

where the number of degrees of freedom N for the chi-square 
quantile is equal to the number of parameters of interest.

If the large-sample limit is not justified, then use e.g. Monte 
Carlo to get distribution of tμ.
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Prototype search analysis 
Search for signal in a region of phase space; result is histogram
of some variable x giving numbers:

Assume the ni are Poisson distributed with expectation values

signal

where

background

strength parameter
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Prototype analysis (II)
Often also have a subsidiary measurement that constrains some
of the background and/or shape parameters:

Assume the mi are Poisson distributed with expectation values

nuisance parameters (θs, θb,btot)
Likelihood function is
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The profile likelihood ratio
Base significance test on the profile likelihood ratio:

maximizes L for
specified μ

maximize L

Define critical region of test of μ by the region of data space
that gives the lowest values of λ(μ). 

Important advantage of profile LR is that its distribution 
becomes independent of nuisance parameters in large sample 
limit.
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Test statistic for discovery
Suppose relevant alternative to background-only (μ = 0) is μ ≥ 0.

So take critical region for test of μ = 0 corresponding to high q0
and > 0 (data characteristic for μ ≥ 0).

That is, to test background-only hypothesis define statistic

i.e. here only large (positive) observed signal strength is 
evidence  against the background-only hypothesis.

Note that even though here physically μ ≥ 0, we allow 
to be negative.  In large sample limit its distribution becomes
Gaussian, and this will allow us to write down simple 
expressions for distributions of our test statistics.

µ̂

µ̂
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Distribution of q0 in large-sample limit
Assuming approximations valid in the large sample (asymptotic)
limit, we can write down the full distribution of q0 as

The special case μ′ = 0 is a “half chi-square” distribution: 

In large sample limit, f(q0|0) independent of nuisance parameters;
f(q0|μ′)  depends on nuisance parameters through σ.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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p-value for discovery
Large q0 means increasing incompatibility between the data
and hypothesis, therefore p-value for an observed q0,obs is

use e.g. asymptotic formula

From p-value get 
equivalent significance,
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Cumulative distribution of q0, significance
From the pdf, the cumulative distribution of q0 is found to be 

The special case μ′ = 0 is 

The p-value of the μ = 0 hypothesis is

Therefore the discovery significance Z is simply

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formula 

μ = param. of interest
b = nuisance parameter
Here take s known, τ = 1.

Asymptotic formula is 
good approximation to 5σ
level (q0 = 25) already for
b ~ 20.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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How to read the p0 plot
The “local” p0 means the p-value of the background-only
hypothesis obtained from the test of μ = 0 at each individual 
mH, without any correct for the Look-Elsewhere Effect.

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (μ = 1) at each mH.

ATLAS, Phys. Lett. B 716 (2012) 1-29

The blue band gives the
width of the distribution
(±1σ) of significances
under assumption of the
SM Higgs.



I.e. when setting an upper limit, an upwards fluctuation of the data 
is not taken to mean incompatibility with the hypothesized μ :  

From observed qμ find p-value:

Large sample approximation:   

To find upper limit at CL = 1-α, set pμ = α and solve for μ.
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Test statistic for upper limits
For purposes of setting an upper limit on μ use

where

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formulae 
Consider again n ~ Poisson(μs + b), m ~ Poisson(τb)
Use qμ to find p-value of hypothesized μ values.

E.g. f(q1|1) for p-value of μ =1.

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e.,
q1 = 2.69 or  Z1 = √q1 =  1.64.

Median[q1 |0] gives “exclusion 
sensitivity”.

Here asymptotic formulae good
for s = 6, b = 9.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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How to read the green and yellow limit plots
For every value of mH, find the upper limit on μ.

Also for each mH, determine the distribution of upper limits μup one 
would obtain under the hypothesis of μ = 0.  

The dashed curve is the median μup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution.

ATLAS, Phys. Lett. B 716 (2012) 1-29
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I.  Discovery sensitivity for counting experiment with b known:

(a)

(b)  Profile likelihood 
ratio test & Asimov:

II.  Discovery sensitivity with uncertainty in b, σb:

(a)

(b)  Profile likelihood ratio test & Asimov:

Expected discovery significance for counting
experiment with background uncertainty
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Counting experiment with known background
Count a number of events n ~ Poisson(s+b), where

s = expected number of events from signal,

b = expected number of background events.

Usually convert to equivalent significance:

To test for discovery of signal compute p-value of s = 0 hypothesis,

where Φ is the standard Gaussian cumulative distribution, e.g.,
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7.

To characterize sensitivity to discovery, give expected (mean
or median) Z under assumption of a given s.
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s/√b for expected discovery significance
For large s + b, n → x ~ Gaussian(μ,σ) , μ = s + b, σ = √(s + b).

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),:

Significance for rejecting s = 0 is therefore

Expected (median) significance assuming signal rate s is
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Better approximation for significance
Poisson likelihood for parameter s is

So the likelihood ratio statistic for testing s = 0 is

To test for discovery use profile likelihood ratio:

For now 
no nuisance 
params.
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Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks’ theorem), 

To find median[Z|s], let n → s + b (i.e., the Asimov data set):

This reduces to s/√b for s << b.
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n ~ Poisson(s+b),  median significance,
assuming s, of the hypothesis s = 0

“Exact” values from MC,
jumps due to discrete data.

Asimov √q0,A good approx.
for broad range of s, b.

s/√b only good for s ≪ b.

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727
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Extending s/√b to case where b uncertain
The intuitive explanation of s/√b is that it compares the signal,
s, to the standard deviation of n assuming no signal, √b.

Now suppose the value of b is uncertain, characterized by a 
standard deviation σb.

A reasonable guess is to replace √b by the quadratic sum of
√b and σb, i.e.,

This has been used to optimize some analyses e.g. where 
σb cannot be neglected.
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Profile likelihood with b uncertain

This is the well studied “on/off” problem:  Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...

Measure two Poisson distributed values:

n ~ Poisson(s+b)         (primary or “search” measurement)

m ~ Poisson(τb) (control measurement, τ known)

The likelihood function is

Use this to construct profile likelihood ratio (b is nuisance
parameter):
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Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

and in particular to test for discovery (s = 0), 
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Asymptotic significance
Use profile likelihood ratio for q0, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

Essentially same as in:



Or use the variance of b = m/τ,  
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Asimov approximation for median significance
To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

n → s + b
m → τb

,   to eliminate τ:ˆ
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Limiting cases

Expanding the Asimov formula in powers of s/b and
σb

2/b (= 1/τ) gives

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated 
with the Asimov data set.
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Testing the formulae:  s = 5
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Using sensitivity to optimize a cut
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Summary on discovery sensitivity

For large b, all formulae OK.

For small b, s/√b and s/√(b+σb
2) overestimate the significance.

Could be important in optimization of searches with
low background.

Formula maybe also OK if model is not simple on/off experiment, 
e.g., several background control measurements (check this).

Simple formula for expected discovery significance based on
profile likelihood ratio test and Asimov approximation:
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Finally
Two lectures only enough for a brief introduction to:

Limits (confidence intervals/regions)
Systematics (nuisance parameters)
A bit beyond...  (sensitivity)

Final thought:  once the basic formalism is fixed, most of the 
work focuses on writing down the likelihood, e.g., P(x|θ), and 
including in it enough parameters to adequately describe the data 
(true for both Bayesian and frequentist approaches).
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Extra slides
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p-values in cases with nuisance parameters
Suppose we have a statistic qθ that we use to test a hypothesized
value of a parameter θ, such that the p-value of θ is

But what values of ν to use for f(qθ |θ, ν)?
Fundamentally we want to reject θ only if pθ < α for all ν.

→ “exact” confidence interval

But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered (resulting interval for θ “overcovers”).
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Profile construction (“hybrid resampling”)

Approximate procedure is to reject θ if pθ ≤ α where
the p-value is computed assuming the value of the nuisance
parameter that best fits the data for the specified θ :

“double hat” notation means profiled
value, i.e., parameter that maximizes
likelihood for the given θ.

The resulting confidence interval will have the correct coverage
for the points (θ, ˆ̂ν(θ)) .

Elsewhere it may under- or overcover, but this is usually as good
as we can do (check with MC if crucial or small sample problem).
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Low sensitivity to μ
It can be that the effect of a given hypothesized μ is very small
relative to the background-only (μ = 0) prediction.

This means that the distributions f(qμ|μ) and f(qμ|0) will be
almost the same:
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Having sufficient sensitivity
In contrast, having sensitivity to μ means that the distributions
f(qμ|μ) and f(qμ|0)  are more separated: 

That is, the power (probability to reject μ if μ = 0) is substantially 
higher than α.  Use this power as a measure of the sensitivity.
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Spurious exclusion
Consider again the case of low sensitivity.  By construction the 
probability to reject μ if μ is true is α (e.g., 5%).

And the probability to reject μ if μ = 0 (the power) is only slightly 
greater than α.

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV).

“Spurious exclusion”
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Ways of addressing spurious exclusion

The problem of excluding parameter values to which one has
no sensitivity known for a long time; see e.g.,

In the 1990s this was re-examined for the LEP Higgs search by
Alex Read and others

and led to the “CLs” procedure for upper limits.

Unified intervals also effectively reduce spurious exclusion by
the particular choice of critical region.
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The CLs procedure

f (Q|b)    

f (Q|s+b)    

ps+bpb

In the usual formulation of CLs, one tests both the μ = 0 (b) and
μ > 0 (μs+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb:
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The CLs procedure (2)
As before, “low sensitivity” means the distributions of Q under 
b and s+b are very close:

f (Q|b)    

f (Q|s+b)    

ps+bpb
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The CLs solution (A. Read et al.) is to base the test not on
the usual p-value (CLs+b), but rather to divide this by CLb
(~ one minus the p-value of the b-only hypothesis), i.e.,

Define:

Reject s+b 
hypothesis if: Increases “effective” p-value  when the two

distributions become close (prevents 
exclusion if sensitivity is low).

f (Q|b)    f (Q|s+b)    

CLs+b
= ps+b

1-CLb
= pb

The CLs procedure (3)
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Choice of test for limits (2)
In some cases μ = 0 is no longer a relevant alternative and we 
want to try to exclude μ on the grounds that some other measure of 
incompatibility between it and the data exceeds some threshold.

If the measure of incompatibility is taken to be the likelihood ratio
with respect to a two-sided alternative, then the critical region can 
contain both high and  low data values.  

→ unified intervals, G. Feldman, R. Cousins, 
Phys. Rev. D 57, 3873–3889 (1998)

The Big Debate is whether to use one-sided or unified intervals
in cases where small (or zero) values of the parameter are relevant
alternatives.  Professional statisticians have voiced support
on both sides of the debate. 
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Unified (Feldman-Cousins) intervals
We can use directly
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as a test statistic for a hypothesized μ.

where

Large discrepancy between data and hypothesis can correspond
either to the estimate for μ being observed high or low relative
to μ.

This is essentially the statistic used for Feldman-Cousins intervals
(here also treats nuisance parameters).  

G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873.

Lower edge of interval can be at μ = 0, depending on data.
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Upper/lower edges of F-C interval for μ versus b
for n ~ Poisson(μ+b)

Lower edge may be at zero, depending on data.

For n = 0, upper edge has (weak) dependence on b.

Feldman & Cousins, PRD 57 (1998) 3873

G. Cowan / RHUL Physics



48G. Cowan / RHUL Physics SOS 2021 / lecture 2

Example:  fitting a straight line

Data:

Model: yi independent and all follow yi ~ Gauss(μ(xi ), σi )

assume xi and σi known.

Goal:  estimate θ0

Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)
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Maximum likelihood fit with Gaussian data

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)
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θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     

to find 



51G. Cowan / RHUL Physics SOS 2021 / lecture 2

Correlation between

causes errors

to increase.

Standard deviations from

tangent lines to contour

ML (or LS) fit of θ0 and θ1
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The information on θ1

improves accuracy of

If we have a measurement t1 ~ Gauss (θ1, σt1)
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Profiling
The lnL = lnLmax – ½ contour in the (θ0, θ1) plane is a confidence 
region at CL = 39.3%.

Furthermore if one wants to know only about, say, θ0, then the
interval in θ0  corresponding to lnL = lnLmax – ½ is a confidence 
interval at CL = 68.3% (i.e., ±1 std. dev.).

I.e., form the interval for θ0
using

where θ1 is replaced by its 
“profiled” value
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Reminder of Bayesian approach
In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value θ.

Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

Our experiment has data x, → likelihood L(x|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf p(θ|x) contains all our knowledge about θ.
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Bayesian approach:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 
We need to associate prior probabilities with θ0 and θ1, e.g.,

Likelihood for control
measurement t1

← ‘non-informative’, in any
case much broader than L(θ0)

Ur = “primordial”
prior 

← suppose knowledge of θ0 has 
no influence on knowledge of θ1

prior after t1,
before y
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Bayesian example:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

Putting the ingredients into Bayes’ theorem gives:

posterior    ∝ likelihood         ✕ prior

Note here the likelihood only reflects the measurements y.

The information from the control measurement t1 has been put 
into the prior for θ1.

We would get the same result using the likelihood P(y,t|θ0,θ1) and 
the constant  “Ur-prior” for θ1.
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Marginalizing the posterior pdf

For this example, numbers come out same as in frequentist 
approach, but interpretation different.  

We then integrate (marginalize)  p(θ0,θ1|y) to find p(θ0 |y):

In this example we can do the integral (rare).  We find

(same as for MLE)
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Marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional θ but look only at 
distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf p(θ), generate a sequence of 
points θ1, θ2, θ3,... 

1)  Start at some point 

2)  Generate  

Proposal density q(θ; θ0)
e.g. Gaussian centred
about θ0

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

Still works if p(θ) is known only as a proportionality, which is 
usually what we have from Bayes’ theorem: p(θ|x) ∝ p(x|θ)π(θ).

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:  q(θ; θ0) = q(θ0; θ)

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher p(θ), take it;  
if not, only take the step with probability p(θ)/p(θ0).
If proposed step rejected, repeat the current point.
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Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Normalized histogram of θ0 gives 
its marginal posterior pdf:
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
an “expert” says it should be positive and not too much  greater 
than 0.1 or so, i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.


