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Outline
Lecture #1:  An introduction to Bayesian statistical methods

Role of probability in data analysis (Frequentist, Bayesian)
A simple fitting problem : Frequentist vs. Bayesian solution
Bayesian computation, Markov Chain Monte Carlo

Lecture #2:  Setting limits, making a discovery
Frequentist vs Bayesian approach,       
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Frequentist vs Bayesian approach,       
treatment of systematic uncertainties

Lecture #3:  Multivariate methods for HEP
Event selection as a statistical test
Neyman-Pearson lemma and likelihood ratio test
Some multivariate classifiers:

NN, BDT, SVM, ...



Data analysis in particle physics 

Observe events of a certain type

Measure characteristics of each event (particle momenta,
number of muons, energy of jets,...)
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number of muons, energy of jets,...)
Theories (e.g. SM) predict distributions of these properties
up to free parameters, e.g., α, GF, MZ, αs, mH, ...
Some tasks of data analysis:

Estimate (measure) the parameters;
Quantify the uncertainty of the parameter estimates;
Test the extent to which the predictions of a theory are 
in agreement with the data (→ presence of New Physics?)



Dealing with uncertainty 

In particle physics there are various elements of uncertainty:

theory is not deterministic
quantum mechanics

random measurement errors
present even without quantum effects
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present even without quantum effects

things we could know in principle but don’t
e.g. from limitations of cost, time, ...

We can quantify the uncertainty using PROBABILITY



A definition of probability 

Consider a set S with subsets A, B, ...

Kolmogorov
axioms (1933)
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Also define conditional probability:



Interpretation of probability
I. Relative frequency

A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...

II. Subjective probability
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A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.
• In particle physics  frequency interpretation often most useful,

but subjective probability can provide more natural treatment of 
non-repeatable phenomena:  

systematic uncertainties, probability that Higgs boson exists,...



Bayes’ theorem
From the definition of conditional probability we have

and

but , so

Bayes’ theorem
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First published (posthumously) by the
Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53
(1763) 370; reprinted in Biometrika, 45 (1958) 293.



The law of total probability

Consider a subset B of 
the sample space S,

B ∩ Ai

Ai

B

S

divided into disjoint subsets Ai
such that ∪i Ai = S,

→
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B ∩ Ai→

→

→ law of total probability

Bayes’ theorem becomes



Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 
P (0.117 < α < 0.121), 
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P (0.117 < αs < 0.121), 

etc. are either 0 or 1, but we don’t know which.

The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’.



Bayesian Statistics − general philosophy 
In Bayesian statistics, interpretation of probability extended to
degree of belief (subjective probability).  Use this for hypotheses:

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)
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posterior probability, i.e., 
after seeing the data

normalization involves sum 
over all possible hypotheses

Bayesian methods can provide more natural treatment of  non-
repeatable phenomena:  

systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes’ thm.)



Statistical vs. systematic errors
Statistical errors:  

How much would the result fluctuate upon repetition of 
the measurement?

Implies some set of assumptions to define probability of 
outcome of the measurement.

Systematic errors:
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What is the uncertainty in my result due to 
uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty;
modeling of measurement apparatus.

Usually taken to mean the sources of error do not vary 
upon repetition of the measurement.  Often result from 
uncertain value of calibration constants, efficiencies, etc.



Systematic errors and nuisance parameters
Model prediction (including e.g. detector effects) 
never same as "true prediction" of the theory:

y model:  

truth:
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x

Model can be made to approximate better the truth by including
more free parameters.

systematic uncertainty ↔ nuisance parameters



Example:  fitting a straight line

Data:

Model:  measured yi independent, Gaussian:

G. Cowan SUSSP65, St Andrews, 16-29 August 2009 / Statistical Methods 1 page 13

assume xi and σi known.

Goal:  estimate θ0

(don’t care about θ1).



Standard deviations from

tangent lines to contour

Frequentist approach
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Correlation between

causes errors

to increase.

tangent lines to contour



The information on θ1

improves accuracy of

Frequentist case with a measurement t1 of θ1
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Bayesian method
We need to associate prior probabilities with θ0 and θ1, e.g.,

← based on previous 
measurement

reflects ‘prior ignorance’, in any
case much broader than
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Putting this into Bayes’ theorem gives:

posterior    ∝ likelihood         × prior

measurement



Bayesian method (continued)

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x):

In this example we can do the integral (rare).  We find
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Usually need numerical methods (e.g. Markov Chain Monte
Carlo) to do integral.



Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
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Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than if uncorrelated .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 



Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:
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Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.



MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density
e.g. Gaussian centred
about
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3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate



Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than it would be with uncorrelated points.

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
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so as to minimize autocorrelation.  Often take proposal
density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  
if not, only take the step with probability 
If proposed step rejected, hop in place.



Metropolis-Hastings caveats
Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow

Unfortunately there are few useful theorems to tell us when the
sequence has converged.
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sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try starting from a different
point and see if the result is similar.



Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
e.g., a theorist says it should be positive and not too much  greater
than 0.1 "or so", i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:
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This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.



A more general fit (symbolic)
Given measurements: 

and (usually) covariances:

Predicted value:

control variable parameters bias

expectation value
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Often take:

Minimize

Equivalent to maximizing L(θ) ∼ e−χ2/2, i.e., least squares same 
as maximum likelihood using a Gaussian likelihood function. 



Its Bayesian equivalent
Take

Joint probability
for all parameters
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and use Bayes’ theorem:

To get desired probability for θ, integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator, 
σθ same as from χ2 = χ2

min + 1.  (Back where we started!)



Alternative priors for systematic errors
Gaussian prior for the bias b often not realistic, especially if one
considers the "error on the error".  Incorporating this can give
a prior with longer tails:
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π b
(b

)

Represents ‘error
on the error’; 
standard deviation 
of πs(s) is σs.

b



A simple test
Suppose fit effectively averages four measurements.

Take σsys = σstat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(µ|y):

m
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)
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Usually summarize posterior p(µ|y) 
with mode and standard deviation:

experiment

m
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µ
p(
µ|

y)



Simple test with inconsistent data
Case #2: there is an outlier Posterior p(µ|y):
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→ Bayesian fit less sensitive to outlier.

experiment

m
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m
en

t

µ

(See also D'Agostini 1999; Dose & von der Linden 1999)



Goodness-of-fit vs. size of error
In LS fit, value of minimized χ2 does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high χ2 corresponds to a larger error (and vice versa).

2000 repetitions of
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2000 repetitions of
experiment, σs = 0.5,
here no actual bias.

po
st
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r σ
µ

χ2

σµ from least squares



Summary of lecture 1
The distinctive features of Bayesian statistics are:

Subjective probability used for hypotheses (e.g. a parameter).

Bayes' theorem relates the probability of data given H
(the likelihood) to the posterior probability of H given data:

Requires prior 
probability for H
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probability for H

Bayesian methods often yield answers that are close (or identical)
to those of frequentist statistics, albeit with different interpretation.

This is not the case when the prior information is important
relative to that contained in the data.



Extra slides 
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Some Bayesian references 
P. Gregory, Bayesian Logical Data Analysis for the Physical 
Sciences, CUP, 2005

D. Sivia, Data Analysis: a Bayesian Tutorial, OUP, 2006

S. Press, Subjective and Objective Bayesian Statistics:  Principles, 
Models and Applications, 2nd ed., Wiley, 2003

A. O’Hagan, Kendall’s, Advanced Theory of Statistics, Vol. 2B, 
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A. O’Hagan, Kendall’s, Advanced Theory of Statistics, Vol. 2B, 
Bayesian Inference, Arnold Publishers, 1994

A. Gelman et al., Bayesian Data Analysis, 2nd ed., CRC, 2004

W. Bolstad, Introduction to Bayesian Statistics, Wiley, 2004

E.T. Jaynes, Probability Theory:  the Logic of Science,  CUP, 2003


