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Outline 

Lecture 1:  Introduction and basic formalism 
 Probability, statistical tests, parameter estimation. 

Lecture 2:  Discovery and Limits 
 Quantifying discovery significance and sensitivity 
 Frequentist and Bayesian intervals/limits 

Lecture 3:  Further topics 

 The Look-Elsewhere Effect 
 Unfolding (deconvolution) 
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Recap on statistical tests 
Consider test of a parameter µ, e.g., proportional to signal rate. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Equivalently define a p-value pµ such that the critical region  
corresponds to pµ ≤ α.  

Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Large-sample approximations for prototype  
analysis using profile likelihood ratio 

Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
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signal 

where 

background 

strength parameter 

Assume the ni are Poisson distributed with expectation values 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
 
Assume the mi are Poisson distributed with expectation values 
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nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 
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maximizes L for 
Specified µ	



maximize L	



The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR in the present analysis with variable µ  
 and nuisance parameters θ is expected to be near optimal. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 
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i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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p-value for discovery 
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Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 
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So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ′),  
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Distribution of q0 in large-sample limit 

Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 
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The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  
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The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Test statistic for upper limits 

For purposes of setting an upper limit on µ one may use 
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Note for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

From observed qµ find p-value: 

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 

where 
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Distribution of qµ in large-sample limit	
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Independent  
of nuisance  
parameters. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formula 	
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Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ	


level (q0 = 25) already for 
b ~ 20. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formulae 	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Unified (Feldman-Cousins) intervals 
We can use directly 
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as a test statistic for a hypothesized µ. 

where 

Large discrepancy between data and hypothesis can correspond 
either to the estimate for µ being observed high or low relative 
to µ. 

This is essentially the statistic used for Feldman-Cousins intervals 
(here also treats nuisance parameters).   

     G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873. 
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Distribution of tµ	



Using Wald approximation, f (tµ|µ′) is noncentral chi-square 
for one degree of freedom:  
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Special case of µ = µ ′ is chi-square for one d.o.f. (Wilks). 

The p-value for an observed value of tµ is 

and the corresponding significance is 
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 2 19 

Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  Use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 
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Ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure for upper limits. 

Unified intervals also effectively reduce spurious exclusion by 
the particular choice of critical region. 
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The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ > 0 (µs+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 
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The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     

f (Q|s+b)     

ps+b pb 
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The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(~ one minus the p-value of the b-only hypothesis), i.e., 

Define: 

Reject s+b  
hypothesis if: Reduces “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (Q|b)     f (Q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 
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Setting upper limits on µ = σ/σSM 
Carry out the CL“s” procedure for the parameter µ = σ/σSM,  
resulting in an upper limit µup. 

In, e.g., a Higgs search, this is done for each value of mH.   

At a given value of mH, we have an observed value of µup, and 
we can also find the distribution f(µup|0): 

±1σ (green) and ±2σ (yellow) 
bands from toy MC; 

Vertical lines from asymptotic 
formulae. 
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How to read the green and yellow limit plots 

ATLAS, Phys. Lett. 
B 710 (2012) 49-66 

For every value of mH, find the CLs upper limit on µ. 

Also for each mH, determine the distribution of upper limits µup one 
would obtain under the hypothesis of µ = 0.   

The dashed curve is the median µup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution. 
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How to read the p0 plot 

ATLAS, Phys. Lett. 
B 710 (2012) 49-66 

The “local” p0 means the p-value of the background-only 
hypothesis obtained from the test of µ = 0 at each individual mH, 
without any correct for the Look-Elsewhere Effect. 

The “Sig. Expected” (dashed) curve gives the median p0 
under assumption of the SM Higgs (µ = 1) at each mH. 
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How to read the “blue band” 
On the plot of     versus mH, the blue band is defined by  µ̂

i.e., it approximates the 1-sigma error band (68.3% CL conf. int.) 

ATLAS, Phys. Lett. 
B 710 (2012) 49-66 
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The Bayesian approach to limits 
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this  
reflects degree of belief about θ before doing the experiment. 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Integrate posterior pdf  p(θ | x) to give interval with any desired 
probability content.   

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from 
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Bayesian prior for Poisson parameter 
Include knowledge that s ≥0 by setting prior π(s) = 0 for s<0. 

Could try to reflect ‘prior ignorance’ with e.g.  

Not normalized but this is OK as long as L(s) dies off for large s. 

Not invariant under change of parameter — if we had used instead 
a flat prior for, say, the mass of the Higgs boson, this would  
imply a non-flat prior for the expected number of Higgs events. 

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; 

or viewed as a recipe for producing an interval whose frequentist 
properties can be studied (coverage will depend on true s).  
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Bayesian interval with flat prior for s 
Solve numerically to find limit sup. 

For special case b = 0, Bayesian upper limit with flat prior 
numerically same as one-sided frequentist case (‘coincidence’).  

Otherwise Bayesian limit is 
everywhere greater than 
the one-sided frequentist limit,  
and here (Poisson problem) it  
coincides with the CLs limit. 

Never goes negative. 

Doesn’t depend on b if n = 0. 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 2 32 

Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  
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Priors from formal rules (cont.)  
For a review of priors obtained by formal rules see, e.g., 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction, especially the reference priors 
of Bernardo and Berger; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
energy physics, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111. 

D. Casadei, Reference analysis of the signal + background model  
in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270. 
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Jeffreys’ prior 
According to Jeffreys’ rule, take prior according to 

where 

is the Fisher information matrix. 

One can show that this leads to inference that is invariant under 
a transformation of parameters. 

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson  
mean µ it is proportional to 1/√µ.  
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Jeffreys’ prior for Poisson mean 

Suppose n ~ Poisson(µ).  To find the Jeffreys’ prior for µ, 

So e.g. for µ = s + b, this means the prior π(s) ~ 1/√(s + b),   
which depends on b.  Note this is not designed as a degree of  
belief  about s. 
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Nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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p-values in cases with nuisance parameters 
Suppose we have a statistic qθ that we use to test a hypothesized 
value of a parameter θ, such that the p-value of θ is 

But what values of ν to use for f (qθ|θ, ν)? 
Fundamentally we want to reject θ only if pθ < α for all ν. 

 → “exact” confidence interval 
Recall that for statistics based on the profile likelihood ratio, the 
distribution f (qθ|θ, ν) becomes independent of the nuisance 
parameters in the large-sample limit. 
But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered, even those strongly disfavoured by the data (resulting 
interval for θ “overcovers”). 
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Profile construction (“hybrid resampling”) 

Compromise procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ: 

“double hat” notation means 
value of parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (!, ˆ̂"(!)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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“Hybrid frequentist-Bayesian” method 

Alternatively, suppose uncertainty in ν is characterized by 
a Bayesian prior π(ν). 

Can use the  marginal likelihood to model the data:  

This does not represent what the data distribution would 
be if we “really” repeated the experiment, since then ν would 
not change. 

But the procedure has the desired effect.  The marginal likelihood 
effectively builds the uncertainty due to ν into the model. 

Use this now to compute (frequentist) p-values → result 
has hybrid “frequentist-Bayesian” character. 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 3 40 

The “ur-prior” behind the hybrid method 

But where did π(ν) come frome?  Presumably at some earlier 
point there was a measurement of some data y with 
likelihood L(y|ν), which was used in Bayes’theorem, 

and this “posterior” was subsequently used for π(ν) for the 
next part of the analysis. 

But it depends on an “ur-prior” π0(ν), which still has to be 
chosen somehow (perhaps “flat-ish”). 

But once this is combined to form the marginal likelihood, the 
origin of the knowledge of ν may be forgotten, and the model 
is regarded as only describing the data outcome x. 
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The (pure) frequentist equivalent 
In a purely frequentist analysis, one would regard both 
x and y as part of the data, and write down the full likelihood: 

“Repetition of the experiment” here means generating both 
x and y according to the distribution above. 

In many cases, the end result from the hybrid and pure 
frequentist methods are found to be very similar (cf. Conway, 
Roever, PHYSTAT 2011). 
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More on priors 
Suppose we measure n ~ Poisson(s+b), goal is to make inference 
about s. 

Suppose b is not known exactly but we have an estimate bmeas 
with uncertainty σb. 

For Bayesian analysis, first reflex may be to write down a  
Gaussian prior for b, 

But a Gaussian could be problematic because e.g. 
 b ≥ 0, so need to truncate and renormalize; 
 tails fall off very quickly, may not reflect true uncertainty. 
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Bayesian limits on s with uncertainty on b 
Consider n ~ Poisson(s+b) and take e.g. as prior probabilities 

Put this into Bayes’ theorem, 

Marginalize over the nuisance parameter b,  

Then use p(s|n) to find intervals for s with any desired  
probability content. 
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Gamma prior for b 
What is in fact our prior information about b?  It may be that  
we estimated b using a separate measurement (e.g., background  
control sample) with 

        m ~ Poisson(τb)              (τ = scale factor, here assume known) 

Having made the control measurement we can use Bayes’ theorem 
to get the probability for b given m, 

If we take the ur-prior π0(b) to be to be constant for b ≥ 0, 
then the posterior π(b|m), which becomes the subsequent prior  
when we measure n and infer s, is a Gamma distribution with: 

 mean =  (m + 1) /τ	


 standard dev. = √(m + 1) /τ 
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Gamma distribution 
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Frequentist test with Bayesian treatment of b 

Distribution of n based on marginal likelihood (gamma prior for b): 

and use this as the basis of 
a test statistic: 

p-values from distributions of qm 
under background-only (0) or  
signal plus background (1)  
hypotheses: 
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Frequentist approach to same problem 

In the frequentist approach we would regard both variables 

 n ~ Poisson(s+b) 
 m ~ Poisson(τb) 

as constituting the data, and thus the full likelihood function is 

Use this to construct test of s with e.g. profile likelihood ratio 

Note here that the likelihood refers to both n and m, whereas 
the likelihood used in the Bayesian calculation only modeled n. 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 3 48 

Test based on fully frequentist treatment 
Data consist of both n and m, with distribution 

Use this as the basis of a test 
statistic based on ratio of  
profile likelihoods: 

Here combination of two discrete 
variables (n and m) results in an 
approximately continuous  
distribution for qp. 
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Log-normal prior for systematics 
In some cases one may want a log-normal prior for a nuisance 
parameter (e.g., background rate b).   

This would emerge from the Central Limit Theorem, e.g., 
if the true parameter value is uncertain due to a large number 
of multiplicative changes, and it corresponds to having a 
Gaussian prior for β = ln b. 

where β0 = ln b0 and in the following we write σ as σβ. 
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The log-normal distribution 
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Frequentist-Bayes correspondence for log-normal 
The corresponding frequentist treatment regards the best estimate 
of b as a measured value bmeas that is log-normally distributed, or  
equivalently has a Gaussian distribution for βmeas = ln bmeas: 

To use this to motivate a Bayesian prior, one would use 
Bayes’ theorem to find the posterior for β, 

If we take the ur-prior π0, β(β) constant, this implies an 
ur-prior for b of 
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Example of tests based on log-normal 
Bayesian treatment of b: Frequentist treatment of bmeas: 

Final result similar but note in Bayesian treatment, marginal model 
is only for n, which is discrete, whereas in frequentist model both  
n and continuous bmeas are treated as measurements. 
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Summary of Lecture 2 
Confidence intervals obtained from inversion of a test of 
all parameter values. 

 Freedom to choose e.g. one- or two-sided test, often 
 based on a likelihood ratio statistic. 

Distributions of likelihood-ratio statistics can be written down  
in simple form for large-sample (asymptotic) limit. 

Usual procedure for upper limit based on one-sided test can  
reject parameter values to which one has no sensitivity. 

 Various solutions; so far we have seen CLs. 
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Extra slides 
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Discovery significance for n ~ Poisson(s + b) 

Consider again the case  where we observe n events , 
model as following Poisson distribution with mean s + b 
(assume b is known). 
 
1)   For an observed n, what is the significance Z0 with which 
     we would reject the s = 0 hypothesis? 
 
2)   What is the expected (or more precisely, median ) Z0 if  
     the true value of the signal rate is s? 
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Gaussian approximation for Poisson significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for Poisson significance 

Likelihood function for parameter s is 

or equivalently the log-likelihood is 

Find the maximum by setting  

gives the estimator for s:  
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Approximate Poisson significance (continued) 
The likelihood ratio statistic for testing s = 0 is 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z0|s+b], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(µ s+b),  median significance, 
assuming µ = 1, of the hypothesis µ = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, arXiv:1007.1727 
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Alternative test statistic for upper limits 
Assume physical signal model has µ > 0, therefore if estimator 
for µ comes out negative, the closest physical model has µ = 0. 

Therefore could also measure level of discrepancy between data  
and hypothesized µ with 
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Performance not identical to but very close to qµ (of previous slide). 
qµ  is simpler in important ways:  asymptotic distribution is  
independent of nuisance parameters. 
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Monte Carlo test of asymptotic formulae 	
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For very low b, asymptotic 
formula underestimates Z0. 

Then slight overshoot before 
rapidly converging to MC 
value. 

Significance from asymptotic formula, here Z0 = √q0 = 4,  
compared to MC (true) value. 
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Monte Carlo test of asymptotic formulae 	
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Asymptotic  f (q0|1)  good already for fairly small samples. 

Median[q0|1] from Asimov data set; good agreement with MC. 
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Feldman-Cousins discussion 
The initial motivation for Feldman-Cousins (unified) confidence 
intervals was to eliminate null intervals. 

The F-C limits are based on a likelihood ratio for a test of µ  
with respect to the alternative consisting of all other allowed values 
of µ (not just, say, lower values). 

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of µ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit. 

This means that when a value of µ is excluded, it is because 
there is a probability α for the data to fluctuate either high or low 
in a manner corresponding to less compatibility as measured by 
the likelihood ratio. 
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Upper/lower edges of F-C interval for µ versus b 
for n ~ Poisson(µ+b) 

Lower edge may be at zero, depending on data. 

For n = 0, upper edge has (weak) dependence on b. 

Feldman & Cousins, PRD 57 (1998) 3873 

G. Cowan  



Reference priors J. Bernardo, 
L. Demortier, 
M. Pierini Maximize the expected Kullback–Leibler 

divergence of posterior relative to prior: 
 

 

This maximizes the expected posterior information 
about θ when the prior density is π(θ). 

Finding reference priors “easy” for one parameter: 

G. Cowan  65 St. Andrews 2012 / Statistics for HEP / Lecture 3 

(PHYSTAT 2011) 



Reference priors (2) 
J. Bernardo, 
L. Demortier, 
M. Pierini 

Actual recipe to find reference prior nontrivial; 
see references from Bernardo’s talk, website of 
Berger (www.stat.duke.edu/~berger/papers) and also  
Demortier, Jain, Prosper, PRD 82:33, 34002 arXiv:1002.1111: 

Prior depends on order of parameters.  (Is order dependence  
important? Symmetrize?  Sample result from different orderings?) 
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Upper limit on µ for x ~ Gauss(µ,σ) with µ ≥ 0 

x 
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Comparison of reasons for (non)-exclusion 
Suppose we observe x = -1.   

µ = 1 excluded by diag. line, 
why not by other methods? 

PCL (Mmin=0.5):  Because 
the power of a test of µ = 1 
was below threshold. 

CLs:  Because the lack of 
sensitivity to µ = 1 led to 
reduced 1 – pb, hence CLs  
not less than α.  

F-C:  Because µ = 1 was not 
rejected in a test of size α 
(hence coverage correct). 
But the critical region 
corresponding to more than  
half of α is at high x. 

x 
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Coverage probability for Gaussian problem 
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Flip-flopping 
F-C pointed out that if one decides, based on the data, whether to 
report a one- or two-sided limit, then the stated coverage 
probability no longer holds.   

The problem (flip-flopping) is avoided in unified intervals. 

Whether the interval covers correctly or not depends on how one 
defines repetition of the experiment (the ensemble). 

Need to distinguish between: 

 (1) an idealized ensemble; 

 (2) a recipe one follows in real life that resembles (1).  
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Flip-flopping 
One could take, e.g.: 

Ideal:  always quote upper limit (∞ # of experiments). 

Real:  quote upper limit for as long as it is of any interest, i.e., 
until the existence of the effect is well established.  

The coverage for the idealized ensemble is correct. 

The question is whether the real ensemble departs from this 
during the period when the limit is of any interest as a guide 
in the search for the signal. 

Here the real and ideal only come into serious conflict if  you 
think the effect is well established (e.g. at the 5 sigma level) 
but then subsequently you find it not to be well established, 
so you need to go back to quoting upper limits. 
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Flip-flopping 
In an idealized ensemble, this situation could arise if, e.g., 
we take x ~ Gauss(µ, σ), and the true µ is one sigma 
below what we regard as the threshold needed to discover 
that µ is nonzero. 

Here flip-flopping gives undercoverage because one continually  
bounces above and below the discovery threshold.  The effect 
keeps going in and out of a state of being established.   

But this idealized ensemble does not resemble what happens 
in reality, where the discovery sensitivity continues to improve 
as more data are acquired. 


