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Outline

Lecture 1: Introduction and basic formalism
Probability, statistical tests, parameter estimation.

Lecture 2: Discovery and Limits
Quantifying discovery significance and sensitivity
Frequentist and Bayesian intervals/limits

= Lecture 3: Further topics

The Look-Elsewhere Effect
Unfolding (deconvolution)
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Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891
The Look-Elsewhere Effect

Suppose a model for a mass distribution allows for a peak at
a mass m with amplitude u.

The data show a bump at a mass m,,.
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S | with the no-bump (u = 0)
g I | hypothesis?
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p-value for fixed mass

First, suppose the mass m,, of the peak was specified a priori.

Test consistency of bump with the no-signal (« = 0) hypothesis
with e.g. likelihood ratio

L(0,mg)
L(f1,mo)

where “f1x” indicates that the mass of the peak 1s fixed to m,,.

tix = —21n

The resulting p-value

O
Pfix = / f(tax|0)dt sk

tﬁx,obs

gives the probability to find a value of 7, at least as great as
observed at the specific mass m,,.
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p-value for floating mass

But suppose we did not know where 1n the distribution to
expect a peak.

What we want 1s the probability to find a peak at least as
significant as the one observed anywhere 1n the distribution.

Include the mass as an adjustable parameter in the fit, test
significance of peak using

L(0) (Note m does not appear
L(fi,m) in the u = 0 model.)

'
Pfloat — / f (tﬂoatlo)dtﬂoa.t
t

float,obs
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Gross and Vitells

Distributions of #;, #4. .

For a sufficiently large data sample, #;, ~chi-square for 1 degree
of freedom (Wilks’ theorem).

For #;,, there are two adjustable parameters, u and m, and naively
Wilks theorem says ¢, ~ chi-square for 2 d.o.f.
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Gross and Vitells
Approximate correction for LEE

We would like to be able to relate the p-values for the fixed and
floating mass analyses (at least approximately).

Gross and Vitells show the p-values are approximately related by

Pfloat ~ Pfix + <*/V(C)>

where {(N(c)) is the mean number “upcrossings” of —2In L in
the fit range based on a threshold

C:tﬁX:ZfQix

and where Z; 1s the significance for the fixed mass case.

So we can either carry out the full floating-mass analysis (e.g. use
MC to get p-value), or do fixed mass analysis and apply a
correction factor (much faster than MC).
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Gross and Vitells

Upcrossings of —2InL

The Gross-Vitells formula for the trials factor requires {N(c),
the mean number “upcrossings” of —2In L in the fit range based
on a threshold ¢ =t = Z;. 2.

(N(c)? can be estimated
from MC (or the real
data) using a much lower
threshold c:

Events / unit mass

(N(c)) = (N(cg))e(e7e0)/2

In this way {M(¢)) canbe  s——7F e
estimated without need of |
large MC samples, even 1f

the the threshold cis quite % 20 4 6 s 100 120
high. -
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Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355
Multidimensional look-elsewhere effect

Generalization to multiple dimensions: number of upcrossings
replaced by expectation of Euler characteristic:

Elp(A)]=Y N0, @)

o Number of disconnected components minus number of
"holes’

o S

¢=1 ¢=0 ¢=2

Applications: astrophysics (coordinates on sky), search for
resonance of unknown mass and width, ...
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Summary on Look-Elsewhere Effect

Remember the Look-Elsewhere Effect 1s when we test a single
model (e.g., SM) with multiple observations, i..e, in mulitple
places.

Note there 1s no look-elsewhere effect when considering
exclusion limits. There we test specific signal models (typically
once) and say whether each 1s excluded.

With exclusion there 1s, however, the analogous issue of testing
many signal models (or parameter values) and thus excluding
some even in the absence of signal (“spurious exclusion™)

Approximate correction for LEE should be sufficient, and one
should also report the uncorrected significance.

“There's no sense in being precise when you don't even
know what you're talking about.” — John von Neumann
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Why 5 sigma?

Common practice in HEP has been to claim a discovery if the
p-value of the no-signal hypothesis is below 2.9 x 1077,

corresponding to a significance Z= @' (1 — p) =5 (a 5o effect).

There a number of reasons why one may want to require such
a high threshold for discovery:

The “cost” of announcing a false discovery 1s high.
Unsure about systematics.
Unsure about look-elsewhere effect.

The implied signal may be a prior1 highly improbable
(e.g., violation of Lorentz invariance).
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Why 5 sigma (cont.)?

But the primary role of the p-value 1s to quantify the probability
that the background-only model gives a statistical fluctuation
as big as the one seen or bigger.

It 1s not intended as a means to protect against hidden systematics

or the high standard required for a claim of an important discovery.

In the processes of establishing a discovery there comes a point
where 1t 1s clear that the observation 1s not simply a fluctuation,
but an “effect”, and the focus shifts to whether this 1s new physics
or a systematic.

Providing LEE 1s dealt with, that threshold is probably closer to
3o than 5o.
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Formulation of the unfolding problem

Consider a random variable y, goal is to determine pdf £(y).
If parameterization f{y;#) known, find e.g. ML estimators 6.

If no parameterization available, construct histogram:

80

pj = / fy)dy
bin j

60

Hj = HtotPj

\

“true” histogram

40

expected entries

20

- New goal: construct
y  estimators for the y; (or p)).
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Migration
Effect of measurement errors: y = true value, x = observed value,
migration of entries between bins,

f(y) 1s ‘smeared out’, peaks broadened.

fmeas(Z /R 1Y) ferue(y) dy

l, discretize: dataare n = (ny,....nyN)
M
v; = En;] Z Rijpi, 1=1,...,N response
matrix

Ri; = P(observed in bin 7 |true in bin j)

Note u, v are constants; n subject to statistical fluctuations.
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Efficiency, background

Sometimes an event goes undetected:

N N
Z Ri; = Z P(observed in bin i | true value in bin j)
i=1 i=1

— P(observed anywhere | true value in bin j)

4

j <«— cfficiency

Sometimes an observed event 1s due to a background process:
M

Vi = Z R + Bi
j=1
p; = expected number of background events in observed histogram.

For now, assume the f, are known.
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The basic ingredients
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Summary of ingredients

‘true” histogram:  pu = (p1,..., pM), ot = Z“ ’

probabilities: P = (p1,...,PM) = K/ htot

expectation values for observed histogram: v = (v1,...,VN)
observed histogram: n = (ni,...,nN)
response matrix: R;; = P(observed in bin 7 | true in bin j)

N
efficiencies:  &; =Y Ry

expected background: B3 = (b1,...,0n)

These are related by: Enl=v=Ru+p

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3
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Maximum likelihood (ML) estimator
from 1nverting the response matrix

Assume v = Rp + (3 canbeinverted: p = R_I(V — ,3)

. | vt
Suppose data are independent Poisson: P (n;; 1) = o e
,i.

N
So the log-likelihood is  In L(p) = Z(ni Inv; — ;)
i=1

ML estimatoris Y = n

—> a=R'n-p)
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What went wrong?

800

1 Suppose u really had a lot of

600 [ A A

18 q fine structure.

400

200 é’ [I

800

600 — - _ le
Applying R washes this 400 |

| d
out, but leaves a residual oo ﬁ
structure: [
_] —

Applying R 1'tov puts the fine structure back: i = R™'D.

But we don’t have v, only n. R™! “thinks” fluctuations in n are
the residual of original fine structure, puts this back into .
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ML solution revisited
For Poisson data the ML estimators are unbiased:
Eli) = R™Y(En] - B) = p
Their covariance 1s:

Uij = covlfii, fij] = Z zk R_ ) j1 cOV [N, 1]
k=1

N
= S (R YRk m
k=1

(Recall these statistical errors were huge for the example shown.)

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3

21



ML solution revisited (2)

The information inequality gives for unbiased estimators the
minimum (co)variance bound:

[@‘H(_)g‘ /,—| B i R R
laﬂ-l; a,U-'Z_I i=1 U

(U Y = —E

invert > [J;; = by (R Y (R 1

This 1s the same as the actual variance! I.e. ML solution gives

smallest variance among all unbiased estimators, even though
this variance was huge.

In unfolding one must accept some bias in exchange for a
(hopefully large) reduction in variance.
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Correction factor method

Use equal binning for ﬁ, U and take 1 = C} (n, 3; ) where

MC ) .
O — Mo \I( and ,u, © from Monte Carlo
2 l/,,-j\"IC Slmulatlon (no background).

U.,jj . ()\-’[ (4, ,[L]'] = C'.,? C()V['nia n}]

Often C; ~ O(1) so statistical errors far smaller than for ML.

pMC 10;
But the bias b; = E[,u.,j] — WUiis b = L
¢ MC S12
Vi Vi
Nonzero bias unless MC = Nature. /1
blf.’, L A
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Example from Bob Cousins

Reality check on the statistical errors

Suppose for some bin i we have:
C; =0.1 B3; =0 n; = 100
—_—> [Lz' — C’znz = 10 Op; — Cz-\/-n.z- = 1.0 (10% stat.

eIror)

But according to the estimate, only 10 of the 100 events
found 1n the bin belong there; the rest spilled in from outside.

How can we have a 10% measurement if it 1s based on only 10
events that really carry information about the desired parameter?

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3 24



Discussion of correction factor method

As with all unfolding methods, we get a reduction in statistical
error 1n exchange for a bias; here the bias 1s difficult to quantify
(difficult also for many other unfolding methods).

The bias should be small 1f the bin width is substantially larger
than the resolution, so that there 1s not much bin migration.

So 1f other uncertainties dominate in an analysis, correction factors
may provide a quick and simple solution (a “first-look™).

Still the method has important flaws and 1t would be best to
avoid it.

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3

25



Regularized unfolding

Consider ‘reasonable’ estimators such that for some A log L.
l()g L([Z) > log Lma.x — A log L

Out of these estimators, choose the ‘smoothest’, by maximizing
O(fi) = o log L(f1) + S(f),

S(fi) = regularization function (measure of smoothness),

a = regularization parameter (choose to give desired A log L)

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3 26



Regularized unfolding (2)

N
In addition require > v; = ) Ri]-,u]— = Ntot. .. Maximize
i=1 i
— — — ‘7\:
90(:“7 )‘) - l()gL(,LL) + S(,LL) + A Ntot — L V;

.2' _—

N
where A is a Lagrange multiplier, OJp /X = 0 — X 1; = Nyt
1=1

a = () gives smoothest solution (ignores datal),

a — 00 gives ML solution (variance too large).

T . . . -
We need:  regularization function S( i),
a prescription for setting .
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Tikhonov regularization

Take measure of smoothness = mean square of kth derivative,

dkftrue(y)
dyk

2
) dy , wherek = 1,2, ...

S[fre(y)] = — | (

If we use Tikhonov (k = 2) with log L, = —%XQ,

M—2

S(p) =— ) (—pi +2pi41 — pit2)®
i—1

Lo Qv . .
c/)(,u, A) = —;XQ(,[L) + S(,LL) quadratic in L4;,

— setting derivatives of 0 equal to zero gives linear equations.
Solution using Singular Value Decomposition (SVD).
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SVD implementation of Tikhonov unfolding

A. Hoecker, V. Kartvelishvili, NIM A372 (1996) 469;
(TSVDUnfold in ROOT).

Minimizes Xﬁg(u) + T Z [(,U'i—l-l — i) — (Hi — Hz‘—l)g]
()

Numerical implementation using Singular Value Decomposition.
Recommendations for setting regularization parameter t:

Transform variables so errors ~ Gauss(0,1);

number of transformed values significantly different
from zero gives prescription for ;

or base choice of 7 on unfolding of test distributions.
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SVD example
A. Hocker, V. Kartvelishvili, NIM A372 (1996) 469.
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Edge effects

Regularized unfolding can lead to “edge effects”. E.g.in
Tikhonov regularization with Gaussian data, solution can go
negative:

l-l, ﬁ I I I I
2000

1000

Solution pushed
negative.

Important e.g. 1if New Physics would appear as a longer tail of
a distribution.
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Regularization function based on entropy

Shannon entropy of a set of probabilities is

M
H = — '21 pilog p;
i

All p; equal — maximum entropy (maximum smoothness)
One p; = 1, all others = 0 — minimum entropy

Use entropy as regularization function,

_ R M N’Z ,u'l
S() = H(ji) = — ¥ —log
1=1 [htot Htot

X log(mlmber of ways to arrange it entries in M bins)

Can have Bayesian motivation: S ( [[) —s prior pdf for i
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G. Cowan

Example of entropy-based unfolding

I 1

(a)
20000 | Original i
- 10000 | -
0 | 1 1
0 10 20 30 40 50
o000 - blurred i
10000 i
0 | |
0 10 20 30 40 50
> I I | I I
2 0000 1 unfolded |
=
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0 10 20 30 40 50

pixel number (row 36)
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G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11

Estimating bias and variance

In general, the equations determining ﬁ(’fi) are nonlinear.

Expand ﬁ(ﬁ) about 7hs (observed data set),
Use error propagation to get covariance Uz-j = COV[,LALz-, ,LAL]-],

and estimators for the bias, bi = F [ILALZ'] — [,
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G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11
Choosing the regularization parameter
a=0— /Aj maximally smooth (ignores data).
« — 00 — ML solution (no bias, very large variance).

Possible criteria for best trade-off between bias and variance:

Minimize mean squared error,

1 M .
M El( b)), o
1 M Uy + b2
MSE' = — . -
M z:§1 [l
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G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11
Choosing the regularization parameter (2)

Or look at changes in X2 from unregularized (ML) solution,
Ay?=2AlogL =N

Or require that bias be consistent with zero to within its own error,

, M Db , -
Xb = El W, = M where W ij — COV [bz-, bj].

i.e. if bias significantly different from zero, we would subtract it;

— equivalent to going to smaller A log L or larger « (less bias).
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G. Cowan

G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11

Some examples with Tikhonov regularization

u ﬁ T T T T B T T T T

2000 | : 200 - 1
o 1 +++ —l—_*_*_—l— 1 _'_'__I_

1000 T ot T

-200 - minimum MSE .

o 1 1 1 1 1 1 1 1
u ﬁ T T T T b T T T T
2000 ; 200 (
0 Pt
1000
200 B xg — M T
o 1 1 1 1
0 02 04 0.6 08 1
X X
St. Andrews 2012 / Statistics for HEP / Lecture 3 37



G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11

Some examples with entropy regularization

l‘lr ﬁ T T T T b
2000 | - 200
1000 — . + +_|_+ +—|—+
-200 '  minimum MSE
0 ~
l‘lr ﬁ T T T T b
2000 | 200

o Het +—I— I'I'-l— By -H' -+

JF ”rTIJr +

1000 |
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[terative unfolding (““Bayesian”)
G. D’Agostini, NIM A 362 (1995) 487; see also arXiv:1010.0632.
Goal is to estimate probabilities: P = (p1,...,PMm)

For initial guess take e.g. p; = 1/M

Initial estimators for u are f19g = N0t Po ,

Update according to the rule
| N
fl; = Z P(true value in bin | found in bin 7) n;

t =1
s uses Bayes’ theorem here

using e.g. y* test with previous

1teration.

1 N Continue until solution stable
x Z i ]pz .
6 ]kpk ’

tg=1
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Estimating systematic uncertainty

We know that unfolding introduces a bias, but quantifying this
(including correlations) can be difficult.

Suppose a model predicts a spectrum

f(y;0) ~ 1/y" — u(8)

A priori suppose e.g. 8 = 8 £ 2. More precisely, assign prior z(6).
Propagate this into a systematic covariance for the unfolded
spectrum:

o [, N | (Typically large
Uij = /(Mz — pi(0)) (5 — pi(0)) w(6) do positive correlations.)

Often 1n practice, one doesn’t have 7(6) but rather a few models
that differ in spectrum. Not obvious how to convert this into
a meaningful covariance for the unfolded distribution.
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Stat. and sys. errors of unfolded solution

In general the statistical covariance matrix of the unfolded
estimators 1s not diagonal; need to report full

Ui; = cov|fii, [i;]

But unfolding necessarily introduces biases as well, corresponding
to a systematic uncertainty (also correlated between bins).

This 1s more difficult to estimate. Suppose, nevertheless,
we manage to report both Uy, and U,

To test a new theory depending on parameters @, use e.g.

X°(0) = (1(0) — )" (Ustat + Usys) ™" (1(8) — 1)

Mixes frequentist and Bayesian elements; interpretation of result
can be problematic, especially if U itself has large uncertainty.
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Folding

Suppose a theory predicts f(y) — u (may depend on parameters ).

Given the response matrix R and expected background f, this
predicts the expected numbers of observed events:

v=Rp+p3

From this we can get the likelihood, e.g., for Poisson data,

L(n|v) =

And using this we can fit parameters and/or test, e.g., using
the likelihood ratio statistic

_ L(nlv)
=2l hE) TN

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3 42



Versus unfolding

If we have an unfolded spectrum and full statistical and
systematic covariance matrices, to compare this to a model u
compute likelithood

L(ft|p) ~ e/
where

X2 — (N - ﬂ)T(Ust.at + Usys)_l(/-l' - /-Al')
Complications because one needs estimate of systematic bias U,

If we find a gain in sensitivity from the test using the unfolded
distribution, e.g., through a decrease 1n statistical errors, then we
are exploiting information inserted via the regularization (e.g.,
imposed smoothness).

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3
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ML solution again

From the standpoint of testing a theory or estimating its parameters,

the ML solution, despite catastrophically large errors, 1s equivalent
to using the uncorrected data (same information content).

There 1s no bias (at least from unfolding), so use
1 (0) = (14(8) — finir.)" Ustar (14(8) — finr)

The estimators of @ should have close to optimal properties:
zero bias, minimum variance.

The corresponding estimators from any unfolded solution cannot
in general match this.

Crucial point is to use full covariance, not just diagonal errors.

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3
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Summary/discussion

Unfolding can be a minefield and is not necessary if goal is to
compare measured distribution with a model prediction.

Even comparison of uncorrected distribution with future theories
not a problem, as long as it 1s reported together with the expected
background and response matrix.

In practice complications because these ingredients have
uncertainties, and they must be reported as well.

Unfolding useful for getting an actual estimate of the distribution
we think we’ve measured; can e.g. compare ATLAS/CMS.

Model test using unfolded distribution should take account of
the (correlated) bias introduced by the unfolding procedure.
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Summary of Lecture 3

Bayesian treatment of limits 1s conceptually easy (integrate
posterior pdf); appropriate choice of prior not obvious.

Look-Elsewhere Effect

Need to give probability to see a signal as big as the one
you saw (or bigger) anywhere you looked. Hard to define
precisely; approximate correction should be adequate.

Why 5 sigma? If LEE taken in to account, one 1s usually convinced
the effect 1s not a fluctuation much earlier (at 3 sigma?)

Unfolding

G. Cowan St. Andrews 2012 / Statistics for HEP / Lecture 3 46



G. Cowan

Extra slides
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