Parameter Estimation Hands-on Session

Taller de Altas Energías

 Benasque, Spain (online) 4,5 September 2023Centro de cienclas DE BENASQUE PEDRO PASCUAL
http://benasque.org/2023tae/

Glen Cowan
Physics Department
Royal Holloway, University of London g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan

Introduction and materials

The exercises for parameter estimation are at
https://www.pp.rhul.ac.uk/~cowan/stat/exercises/fitting
The exercise and are described in the file fitting_exercises.pdf.
There are both python and ROOT/C++ versions.
$\begin{array}{ll}\text { mlFit.py } & \leftarrow \text { use this for today's exercises } \\ \text { histFit.py } & \leftarrow \text { binned version (uses python class) }\end{array}$
For python, you need python 3 and install iminuit from https://pypi.org/project/iminuit/ with pip install iminuit For ROOT you should have version 6 and C++ installed with a "cern-like" (e.g., Ixplus) setup.

Prior to the exercises we will see how to obtain a confidence interval/region directly from contours of the log-likelihood.

Introduction to the exercises

Consider a pdf for continuous random variable x, (truncate and renormalize in $0 \leq x \leq x_{\max }$)

$$
f(x ; \theta, \xi)=\theta \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}+(1-\theta) \frac{1}{\xi} e^{-x / \xi}
$$

$\theta=$ parameter of interest, gives signal rate.

Depending on context, take ξ, μ, σ as nuisance parameters or fixed.

Generate i.i.d. sample x_{1}, \ldots, x_{n}.
Estimate θ (and other params.)

Fitting with MINUIT (python or root/C++)

To use python, you will need to install the package iminuit (should just work with "pip install iminuit"). See:
https://pypi.org/project/iminuit/
Then download and run the program mlFit.py or the jupyter notebook mlFit.ipynb from
http://www.pp.rhul.ac.uk/~cowan/stat/exercises/fitting/python
To use $\mathrm{C}++$ /ROOT, download the files from
http://www.pp.rhul.ac.uk/~cowan/stat/exercises/fitting/root
to your work directory and build the executable program by typing make and run by typing ./mlFit. This uses the class TMinuit, which is described here:
https://root.cern.ch/doc/master/classTMinuit.html
The instructions below refer to the python version; the corresponding steps for the $\mathrm{C}++/$ ROOT program are similar.

mlFit.py (also jupyter notebook mlFit.ipynb)

```
# Example of maximum-likelihood fit with iminuit version 2.
# pdf is a mixture of Gaussian (signal) and exponential (background),
# truncated in [xMin,xMax].
# G. Cowan / RHUL Physics / December 2021
import numpy as np
import scipy.stats as stats
from scipy.stats import truncexpon
from scipy.stats import truncnorm
from scipy.stats import chi2
import iminuit
from iminuit import Minuit
import matplotlib.pyplot as plt
from matplotlib import container
plt.rcParams["font.size"] = 14
print("iminuit version:", iminuit.__version__) # need 2.x
# define pdf and generate data
np.random.seed(seed=1234567) # fix random seed
theta = 0.2 # fraction of signal
mu = 10. # mean of Gaussian
sigma = 2. # std. dev. of Gaussian
xi = 5. # mean of exponential
24 xMin = 0.
25 xMax = 20.
```


Define the fit function

```
def f(x, par):
    theta = par[0]
    mu = par[1]
    sigma = par[2]
    xi = par[3]
    fs = stats.truncnorm.pdf(x, a=(xMin-mu)/sigma, b=(xMax-mu)/sigma, loc=mu, scale=sigma)
    fb = stats.truncexpon.pdf(x, b=(xMax-xMin)/xi, loc=xMin, scale=xi)
    return theta*fs + (1-theta)*fb
```


Generate the data

```
numVal = 200
xData = np.empty([numVal])
for i in range (numVal):
    r = np.random.uniform();
    if r < theta:
        xData[i] = stats.truncnorm.rvs(a=(xMin-mu)/sigma, b=(xMax-mu)/sigma, loc=mu,
                scale=sigma)
    else:
            xData[i] = stats.truncexpon.rvs(b=(xMax-xMin)/xi, loc=xMin, scale=xi)
```


Set up the fit

```
# Function to be minimized is negative log-likelihood
def negLogL(par):
    pdf = f(xData, par)
    return -np.sum(np.log(pdf))
# Initialize Minuit and set up fit:
parin = np.array([theta, mu, sigma, xi]) # initial values (here = true values)
parname = ['theta', 'mu', 'sigma', 'xi']
parstep = np.array([0.1, 1., 1., 1.]) # initial setp sizes
parfix = [False, True, True, False] # change these to fix/free parameters
parlim = [(0.,1), (None, None), (0., None), (0., None)] # set limits
m = Minuit(negLogL, parin, name=parname)
m.errors = parstep
m.fixed = parfix
m.limits = parlim
m.errordef = 0.5 # errors from lnL = lnLmax - 0.5
```


Do the fit, get errors, extract results

Make some plots...

Approximate confidence intervals/regions from the likelihood function

Suppose we test parameter value(s) $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ using the ratio

$$
\lambda(\boldsymbol{\theta})=\frac{L(\boldsymbol{\theta})}{L(\hat{\boldsymbol{\theta}})}
$$

$$
0 \leq \lambda(\theta) \leq 1
$$

Lower $\lambda(\theta)$ means worse agreement between data and hypothesized θ. Equivalently, usually define

$$
t_{\boldsymbol{\theta}}=-2 \ln \lambda(\boldsymbol{\theta})
$$

so higher t_{θ} means worse agreement between θ and the data.
p-value of $\boldsymbol{\theta}$ therefore

$$
p_{\boldsymbol{\theta}}=\int_{t_{\boldsymbol{\theta}, \mathrm{obs}}}^{\infty} f\left(t_{\boldsymbol{\theta}} \mid \boldsymbol{\theta}\right) d t_{\boldsymbol{\theta}}
$$

Confidence region from Wilks' theorem

Wilks' theorem says (in large-sample limit and provided certain conditions hold...)

$$
\begin{array}{ll}
f\left(t_{\boldsymbol{\theta}} \mid \boldsymbol{\theta}\right) \sim \chi_{n}^{2} & \text { chi-square dist. with \# d.o.f. }= \\
& \# \text { of components in } \boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right) .
\end{array}
$$

Assuming this holds, the p-value is

$$
p_{\boldsymbol{\theta}}=1-F_{\chi_{n}^{2}}\left(t_{\boldsymbol{\theta}}\right) \quad \leftarrow \text { set equal to } \alpha
$$

To find boundary of confidence region set $p_{\theta}=\alpha$ and solve for t_{θ} :

Recall also

$$
t_{\theta}=F_{\chi_{n}^{2}}^{-1}(1-\alpha)
$$

$$
t_{\theta}=-2 \ln \frac{L(\theta)}{L(\hat{\theta})}
$$

Confidence region from Wilks' theorem (cont.)

i.e., boundary of confidence region in θ space is where

$$
\ln L(\boldsymbol{\theta})=\ln L(\hat{\boldsymbol{\theta}})-\frac{1}{2} F_{\chi_{n}^{2}}^{-1}(1-\alpha)
$$

For example, for $1-\alpha=68.3 \%$ and $n=1$ parameter,

$$
F_{\chi_{1}^{2}}^{-1}(0.683)=1
$$

and so the 68.3\% confidence level interval is determined by

$$
\ln L(\theta)=\ln L(\hat{\theta})-\frac{1}{2}
$$

Same as recipe for finding the estimator's standard deviation, i.e.,
$\left[\hat{\theta}-\sigma_{\hat{\theta}}, \hat{\theta}+\sigma_{\hat{\theta}}\right]$ is a 68.3% CL confidence interval.

Example of interval from $\ln L(\theta)$

$$
\text { For } n=1 \text { parameter, } \mathrm{CL}=0.683, Q_{\alpha}=1 \text {. }
$$

Multiparameter case

For increasing number of parameters, $\mathrm{CL}=1-\alpha$ decreases for confidence region determined by a given

$$
Q_{\alpha}=F_{\chi_{n}^{2}}^{-1}(1-\alpha)
$$

Q_{α}	$1-\alpha$				
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
1.0	0.683	0.393	0.199	0.090	0.037
2.0	0.843	0.632	0.428	0.264	0.151
4.0	0.954	0.865	0.739	0.594	0.451
9.0	0.997	0.989	0.971	0.939	0.891

Multiparameter case (cont.)

Equivalently, Q_{α} increases with n for a given $\mathrm{CL}=1-\alpha$.

$1 . \alpha$	\widehat{Q}_{α}				
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
0.683	1.00	2.30	3.53	4.72	5.89
0.90	2.71	4.61	6.25	7.78	9.24
0.95	3.84	5.99	7.82	9.49	11.1
0.99	6.63	9.21	11.3	13.3	15.1

Comment on the $\ln L=\ln L_{\max }-1 / 2$ contour

In the lectures, we saw that the standard deviations of fitted parameters are found from the tanget lines (planes) to the contour

$$
\ln L=\ln L_{\max }-\frac{1}{2}
$$

A similar procedure can be used to find a "confidence region" in the parameter space that will cover the true parameter with probability $\mathrm{CL}=1-\alpha$ (the "confidence level). This uses the contour

$$
\ln L=\ln L_{\max }-\frac{1}{2} F_{\chi^{2}}^{-1}(1-\alpha ; N), \quad N=\text { number of parameters }
$$

If you want the contour $\ln L=\ln L_{\max }-1 / 2$ in iminuit, you need to choose $\mathrm{CL}(=1-\alpha)$ such that $F_{\chi 2}{ }^{-1}(1-\alpha, N)=1$, i.e.,

$$
\mathrm{CL}=F_{\chi^{2}}(1 ; N)=\text { stats.chi2.cdf }(1 ., \mathrm{N})
$$

InL in a class, binned data,...

Sometimes it is convenient to have the function being minimized as a method of a class. An example of this is shown in the program histFit.py (in same directory), which does the same fit as in mlFit but with a histogram of the data:

