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Outline 

Lecture 1: 
 Quick review of probability 
 Parameter estimation, maximum likelihood 
 Statistical tests for discovery and limits 

Lecture 2: 
 Limits for the Poisson counting experiment 
 Nuisance parameters and systematic uncertainties 
 Tests from profile likelihood ratio 
 More parameter estimation, Bayesian methods 
 (Experimental sensitivity) 
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Some statistics books, papers, etc.  
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989 
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.   
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 
S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 (with program library on CD) 
C. Patrignani et al. (Particle Data Group), Review of Particle 
Physics, Chin. Phys. C, 40, 100001 (2016); see also pdg.lbl.gov 
sections on probability, statistics, Monte Carlo 
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Data analysis in particle physics  
Observe events (e.g., pp collisions) and for each, measure 
a set of characteristics: 

 particle momenta, number of muons, energy of jets,... 

Compare observed distributions of these characteristics to  
predictions of theory.  From this, we want to: 

   Estimate the free parameters of the theory: 

   Quantify the uncertainty in the estimates: 

   Assess how well a given theory stands in agreement  
   with the observed data: 

 
To do this we need a clear definition of PROBABILITY 
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A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional  
probability of A given B: 

Subsets A, B independent if: 

If A, B independent, 
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Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
but subjective probability can provide more natural treatment of  
non-repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 
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Bayes’ theorem 
From the definition of conditional probability we have, 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702−1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 
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The law of total probability 

Consider a subset B of  
the sample space S, 

B ∩ Ai 

Ai 

B 

S 

divided into disjoint subsets Ai 
such that ∪i Ai = S, 

→ 

→ 

→ law of total probability 

Bayes’ theorem becomes 
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An example using Bayes’ theorem 
Suppose the probability (for anyone) to have a disease D is: 

← prior probabilities, i.e., 
     before any test carried out 

Consider a test for the disease:  result is + or -

← probabilities to (in)correctly 
     identify a person with the disease 

← probabilities to (in)correctly 
     identify a healthy person 

Suppose your result is +.  How worried should you be?

G. Cowan  
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Bayes’ theorem example (cont.) 
The probability to have the disease given a + result is 

i.e. you’re probably OK! 

Your viewpoint:  my degree of belief that I have the disease is 3.2%. 

Your doctor’s viewpoint:  3.2% of people like this have the disease.

← posterior probability 

G. Cowan  
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations (shorthand:     ). 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

A hypothesis is is preferred if the data are found in a region of 
high predicted probability (i.e., where an alternative hypothesis 
predicts lower probability). 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, use subjective probability for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayes’ theorem has an “if-then” character:  If your prior 
probabilities were π(H), then it says how these probabilities 
should change in the light of the data. 

 No general prescription for priors (subjective!) 
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The likelihood function 
Suppose the entire result of an experiment (set of measurements) 
is a collection of numbers x, and suppose the joint pdf for 
the data x is a function that depends on a set of parameters θ: 

Now evaluate this function with the data obtained and 
regard it as a function of the parameter(s).  This is the 
likelihood function: 

(x constant) 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Frequentist parameter estimation 
Suppose we have a pdf characterized by one or more parameters: 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
Estimators are functions of the data and thus characterized by a 
sampling distribution with a given (co)variance: 

In general they may have a nonzero bias: 

Want small variance and small bias, but in general cannot optimize 
with respect to both; some trade-off necessary. 

biased large 
variance 

best 
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Maximum Likelihood (ML) estimators 
The most important frequentist method for constructing estimators 
is to take the value of  the parameter(s) that maximize the 
likelihood (or equivalently the log-likelihod): 

In some cases we can find the ML estimator as a closed-form  
function of the data; more often it is found numerically. 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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ML example:  parameter of exponential pdf (3) 

For the ML estimator  

For the exponential distribution one has for mean, variance: 

we therefore find 

→ 

→ 
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Variance of estimators:  Monte Carlo method 
Having estimated our parameter we now need to report its 
‘statistical error’, i.e., how widely distributed would estimates 
be if we were to repeat the entire measurement many times. 

One way to do this would be to simulate the entire experiment 
many times with a Monte Carlo program (use ML estimate for MC). 

For exponential example, from  
sample variance of estimates 
we find: 

Note distribution of estimates is roughly 
Gaussian − (almost) always true for  
ML in large sample limit. 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 

Minimum Variance 
Bound (MVB)  
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with exponential: 

Not quite parabolic ln L since finite sample size (n = 50). 
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Information inequality for N parameters 
Suppose we have estimated N parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 

N 
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Prelude to statistical tests: 
A simulated SUSY event 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 

G. Cowan  
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Background events 

This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a  
     SUSY event. 

G. Cowan  
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Frequentist statistical tests  
Suppose a measurement produces data x; consider a hypothesis H0  
we want to test and alternative H1 

 H0, H1 specify probability for x:  P(x|H0), P(x|H1) 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space Ω 

critical region w 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 



G. Cowan  Statistics 1 / JENNIFER, Trieste, 30 Jul - 3 Aug 2018 31 

Classification viewed as a statistical test 

Probability to reject H0 if true (type I error): 

α = size of test, significance level, false discovery rate 

Probability to accept H0 if H1 true (type II error): 

1 - β = power of test with respect to H1  

Equivalently if e.g. H0 = background, H1 = signal, use efficiencies: 
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Purity / misclassification rate 
Consider the probability that an event of signal (s) type 
classified correctly (i.e., the event selection purity),  

Use Bayes’ theorem: 

Here W is signal region 
prior probability 

posterior probability = signal purity  
                                  = 1 – signal misclassification rate 

Note purity depends on the prior probability for an event to be 
signal or background as well as on s/b efficiencies. 
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Physics context of a statistical test 
Event Selection:  data = individual event; goal is to classify 

 Example:  separation of different particle types (electron vs muon) 
 or known event types (ttbar vs QCD multijet). 
 E.g. test H0 : event is background vs. H1 : event is signal. 
 Use selected events for further study. 

 
Search for New Physics:  data = a sample of events.  Test null hypothesis 

 H0 : all events correspond to Standard Model (background only),  

against the alternative 

 H1 : events include a type whose existence is not yet established 
         (signal plus background)  

Many subtle issues here, mainly related to the high standard of proof 
required to establish presence of a new phenomenon.  The optimal statistical 
test  for a search is closely related to that used for event selection. 
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For each reaction we consider we will have a hypothesis for the 
pdf of x , e.g., p(x|b), p(x|s) 

Statistical tests for event selection 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pT of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

E.g. here call H0 the background hypothesis (the event type we  
want to reject); H1 is signal hypothesis (the type we want). 

G. Cowan  
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Selecting events 
Suppose we have a data sample with two kinds of events, 
corresponding to hypotheses H0 and H1 and we want to select 
those of type H1. 

Each event is a point in     space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event 
types H0 or H1? 

accept 
H1 

H0 

Perhaps select events 
with ‘cuts’: 

G. Cowan  
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Other ways to select events 
Or maybe use some other sort of decision boundary: 

accept 
H1 

H0 

accept 
H1 

H0 

linear or nonlinear 

How can we do this in an ‘optimal’ way? 

G. Cowan  
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Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant chosen 
to give a test of the desired size. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Neyman-Pearson doesn’t usually help 
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio 

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data: 

 generate x ~ f (x|s)     →     x1,..., xN 

 generate x ~ f (x|b)     →     x1,..., xN 
 
This gives samples of “training data” with events of known type. 

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute). 
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Approximate LR from histograms 
Want t(x) = f (x|s)/ f(x|b) for x here 

N (x|s) ≈ f (x|s) 

N (x|b) ≈ f (x|b) 

N
(x
|s
)

N
(x
|b
)

One possibility is to generate 
MC data and construct 
histograms for both 
signal and background. 
 
Use (normalized) histogram  
values to approximate LR: 

x

x

Can work well for single  
variable. 
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Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 



G. Cowan  Statistics 1 / JENNIFER, Trieste, 30 Jul - 3 Aug 2018 42 

Strategies for multivariate analysis 

Neyman-Pearson lemma gives optimal answer, but cannot be 
used directly, because we usually don’t have f (x|s), f (x|b). 

Histogram method with M bins for n variables requires that 
we estimate Mn parameters (the values of the pdfs in each cell), 
so this is rarely practical. 

A compromise solution is to assume a certain functional form 
for the test statistic t (x) with fewer parameters; determine them 
(using MC) to give best separation between signal and background. 

Alternatively, try to estimate the probability densities f (x|s) and  
f (x|b) (with something better than histograms) and use the  
estimated pdfs to construct an approximate likelihood ratio. 
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Multivariate methods 
Many new (and some old) methods esp. from Machine Learning: 

 Fisher discriminant 
 (Deep) neural networks 
 Kernel density methods 
 Support Vector Machines 
 Decision trees 
  Boosting 
  Bagging   

 
This is a large topic -- see e.g. lectures 
http://www.pp.rhul.ac.uk/~cowan/stat/stat_2.pdf (from around p 38) 

and references therein. 
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Testing significance / goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point       less  

compatible 
with H 

     more  
compatible 
with H 

This region therefore 
has greater compatibility 
with some alternative Hʹ. 
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p-values 

where π(H) is the prior probability for H. 

Express ‘goodness-of-fit’ by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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Test statistics and p-values 
Consider a parameter µ proportional to rate of signal process. 

Often define a function of the data (test statistic) qµ that reflects  
level of agreement between the data and the hypothesized value µ. 

Usually define qµ so that higher values increasingly incompatibility  
with the data (more compatible with a relevant alternative). 

We can define critical region of test of µ  by qµ ≥ const., 
or equivalently define the p-value of µ as: 

Equivalent formulation of test:  reject µ if pµ < α. 

pdf of qµ assuming µ observed value of qµ 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval will cover the true value of µ with probability ≥ 1 - α. 

Equivalently, the parameter values in the confidence interval have 
p-values of at least α. 

To find edge of interval (the “limit”), set pµ = α and solve for µ. 
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Coming up... 
We now have most of the ingredients to carry out: 

 Parameter estimation 
 Statistical tests 
 Setting limits (confidence intervals) 

In the second lecture we will apply these to some examples and 
extend the concepts e.g. to deal with systematic uncertainties. 


