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Data analysis 1in particle physics

Particle physics experiments are expensive
e.g. LHC, ~ $10'0 (accelerator and experiments)

the competition is intense
(ATLAS vs. CMS) vs. Tevatron

and the stakes are high:

4 sigma effect ~

o T~ sigma effect

Hence the increased interest in advanced statistical methods.
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The Standard Model of particle physics

Matter... ‘?’E + gauge bosons...
=
f photon (y), W=, Z, gluon (g)
=1
3
+ relativity + quantum mechanics + symmetries... = Standard Model

25 free parameters (masses, coupling strengths,...).
Includes Higgs boson (not yet seen).

Almost certainly incomplete (e.g. no gravity).
Agrees with all experimental observations so far.

Many candidate extensions to SM (supersymmetry, extra dimensions,...)
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The Large Hadron Collider

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV

Detectors at 4 pp collision points:
ATLAS .-
CMS —— general purpose
LHCb (b physics)
ALICE (heavy 1on physics)
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The ATLAS detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

2100 physicists
37 countries
167 universities/labs

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

25 m diameter
46 m length

7000 tonnes
~108 electronic channels
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[LHC data

At LHC, ~10° pp collision events per second, mostly uninteresting

do quick sifting, record ~200 events/sec

single event ~ 1 Mbyte

1 “year” ~ 107 s, 10'° pp collisions / year

2 x 10° events recorded / year (~2 Pbyte / year)

For new/rare processes, rates at LHC can be vanishingly small
e.g. Higgs bosons detectable per year could be ~10°
— 'needle in a haystack'

For Standard Model and (many) non-SM processes we can generate
simulated data with Monte Carlo programs (including simulation
of the detector).
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A simulated SUSY event in ATLAS

high p. jets
of hadrons

missing transverse energy
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Background events

ATLAS Atlantis Event: myFiles2_8.4.0_3026_799502

This event from Standard
Model ttbar production also
has high p.. jets and muons,
and some missing transverse
energy.

— can easily mimic a SUSY event.
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A simulated event

Event listing (summary) PYTHIA Monte Carlo
particlesjet KS KF  orig p_i Py p_z pp —> gluino—gIUinO

Ip+! 21 2z 0 0000 0,000 F000, 000 7000, 000 0,938
Ip+! e e 0 000 0L000-7000, 000 7000, 000 0,338

21 21
21 -2
21 21
21 21
21 1000021
21 1000021
21-1000024
21 -3
21 4
21 1000023
21 5
21 -5
21 1000022
21 3
21 -4

0,863 -0,323 1739,862 1739,862 S
-0,621  -0,163 -777.415 777,415 | BT
-2,427 9,486 1487,857 1487.863 0 27 pi+ 0,398 -208,295 309,297
762,310 E3,357 ~dB3.274 47T 2gp oo, 0,087-1695,458 1595, 458
314,363 544,843 408,837 373,1320 =g A —0,009 -314,807 314,007
-E7A.T00 -476.000 525,686 900,477 8 40 fpin 0,127 -102,708 103,700
150,058 112,247 123,860 263.1410 49 (pin) -0,0R8 -94,776 94,276
263,400 187468 83,100 330.6B4 4 4no (pio) —0,062 -144,675 144,674
~73.403 242,403 283,026 381016 | oz oCuoo 0473 3305 4.401
-326,241  -BO0,97L 113,712 385,3310 44 A 2,143 3,081 4,016
51,841 -294,077 389,853 4910380 o5 ;- 0,738 4,015 4,085

-0.537 -93.577 21,293 1013440 4np g 0,795 0,486 0,585
103,352 81,316 83,457 179,000 447 o -1,417 -1,799 4,968

5,451 38,374 52,302 B3, 1000 44 pi- -0,894  -0,176 1,500
char 20,833 7280 5938 ZLEMY 409 (pig) 0,489 -0,590 1,201
I“chi_101 21 1000022 -136.266 72,961 53.246 180314 | 410 (nio) S1105  -1.181  2.855
Ihnu_mu ! 21 14 -7B.2B3 -24.787 21,713 843100 449 {kbari) -0,247  -0,472 1,615
Ihu_mubar ! 21 -14 -lo7.801 16,301 33,226 115.B200  44s pi- —0, 400 0,740 2,705

. - -

ganma 1 22 2,636 1,357 0,125 2,967 iii ?piﬂ} _S*Sgé 3*??& }*Eié
(“chi_1-)  11-1000024 129,643 112,440 129,820 262,993 | g1e (p go) 0111 0.894  2.100
{“chi_20) 11 1000023 -322,330 -80,817 113,191 382,444 497 oy 0107 0953 0 EdD
“chi_10 1 1000022 97,944 77,819 80,917 163,004 ) oo o 00316 0201  0.480
“chi_10 1 1000022 -136,266 -72,061 53,246 1313140 e boeo 1.641 2070 111
AL 17 14 78,263 -24.757 20713 84.910] 313 fooy 1046 L.311 1,908
nu_nubar 1 -14 -lov.eol 16,900 30,226 1156200 4on pi+ 1.407 1,356 1.971
(Delta+t+) 11 2234 0,222 0.012-2734.287 2734287 | 49 (pio) 533 2.7E7  3.500

422 n0 5,324 5,702 8,092
423 pi- 2. 608 2,808 4,255
424 gamma 0,247 0,421 0,489
420 gamma 0,034 2,009 0,043
426 pi+ 5,229 B.403 g.703
427 (pin] 6,747 7.he7 10,961
428 pi- 1,233 1,345 2,372
429 (pi0) 1,141 0,922 1,608
430 gamma 1,1E9 1,208 1,724
431 gamma 0,070 2,060 0,221

]
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Event selection as a statistical test

For each event we measure a set of numbers: X = (x,,...,x, )

X =Jetpy
X, = missing energy
x, = particle 1.d. measure, ...

X follows some n-dimensional joint probability density, which

depends on the type of event produced, i.e., was it pp = tt, pp > gg,...

A Coe p()_c'IHO) \ \

X LA & .
AR e Jf?a / E.g. hypotheses H,,, H
FESNERE .2 hy Hy, Hy, ...
gkt Often simply “signal”,
. :;i%:?;;:':‘ff‘.;l‘ “background”
R .
p ;
/
P(J_“Hl) t
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Finding an optimal decision boundary

In particle physics usually start
by making simple “cuts”:

X, <C,
xj <Cj
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Test statistics

The decision boundary is a surface in the n-dimensional space of

input variables. e.g.. y(X)=const.

We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the

maximum possible separation between the event types:

2 T T T
The decision boundary Yeu
) . . . tH, ...l reject
1s now effectively a single e oo e MRSy
cut on y(x), dividing {“\\
. 1 r [\ =
X-space into two (VIH.) |\ |
regions: f(VH,y T\ 4 _ flyH,)
& : 05 [ | |
R, (acceptH ) | \ /
.*'II I L::?/ T
? 0 1 2 3 4 5

Rl (reject Hﬂ)
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Constructing a test statistic

The Neyman-Pearson lemma states: to obtain the highest background
rejection for a given signal efficiency (highest power for a given

significance level), choose the acceptance region for signal such that

p(X[s) |
p(X|b)

where ¢ 1s a constant that determines the signal efficiency.

C

Equivalently, the optimal discriminating function i1s given by the
likelihood ratio:

V()= p(X[s)

p(x|b)
N.B. any monotonic function of this is just as good.
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Neyman-Pearson doesn't always help

The problem is that we usually don't have explicit formulae for the pdfs

p(xls), p(xlb), so for a given x we can't evaluate the likelihood ratio.

Instead we have Monte Carlo models for signal and background
processes, so we can produce simulated data:
“training data”
generate x~p(xX[s) —> X, ..., X, ,— events of known type

generate i‘wp{ﬂb} — fl

Naive try: enter each (s.b) event into an n-dimensional histogram,
use e.g. M bins for each of the n dimensions, total of M" cells.

n 1s potentially large — prohibitively large number of cells to populate,
can't generate enough training data.
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Two distinct event selection problems

In some cases, the event types in question are both known to exist.

Example: separation of different particle types (electron vs muon)
Use the selected sample for further study.

In other cases, the null hypothesis H, means "Standard Model" events,
and the alternative H; means "events of a type whose existence 1s
not yet established" (to do so 1s the goal of the analysis).

Many subtle issues here, mainly related to the heavy burden
of proof required to establish presence of a new phenomenon.

Typically require p-value of background-only hypothesis
below ~ 1077 (a 5 sigma effect) to claim discovery of
"New Physics".
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Using classifier output for discovery

el search
] NG| — region
background background
excess?
y ycut y
Normalized to unity Normalized to expected

number of events

Discovery = number of events found in search region incompatible
with background-only hypothesis.

p-value of background-only hypothesis can depend crucially
distribution f(ylb) in the "search region".
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Some “‘standard” multivariate methods

Place cuts on individual variables
Simple, intutive, in general not optimal

Linear discriminant (e.g. Fisher]
Simple, optimal if the event types are Gaussian distributed with
equal covariance, otherwise not optimal.

Probability Density Estimation based methods
Try to estimate p(xls), p(xlb) then use v(¥)=p(x|s)/ p(x|b].

In principle best, difficult to estimate p(x) for high dimension.

Neural networks
Can produce arbitrary decision boundary (in principle optimal),
but can be difficult to train, result non-intoitive.
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Example of a "cut-based" study

In the 1990s, the CDF experiment at Fermilab (Chicago) measured
the number of hadron jets produced in proton-antiproton collisions
as a function of their momentum perpendicular to the beam direction:

2 0t | "jet" of
= | particles -“
£ - |°.r
_10% |
; B . CDF ( \ﬁ!
ﬁ,_ 1L —— NLO QCD -
f\:‘g
2
—10
ﬂ
4 . . .
10 | Prediction low relative to data for
very high transverse momentum.
6
10

0 50 100 150 200 250 300 350 400 450
Jet Transverse Energy  (GeV)

G. Cowan Weizmann Institute, 17 Jan 10 / Multivariate Methods page 20



High p jets = quark substructure?

Although the data agree remarkably well with the Standard Model
(QCD) prediction overall, the excess at high p; appears significant:

= I : . . _
E“ CTEQ4M P data — theory
R S e A N X B L*/ theory
, Statistical Errors only
-50 _| | 11 1 1 | L1 1 | |||||||||||| | | |

| | | 11 1 | 1 1 1 1 11 1 |
50 100 150 200 250 300 350 400

The fact that the variable is "understandable" leads directly to a plausible
explanation for the discrepancy, namely, that quarks could possess an
internal substructure.

Would not have been the case if the variable plotted was a complicated
combination of many inputs.

G. Cowan Weizmann Institute, 17 Jan 10 / Multivariate Methods page 21



High p jets from parton model uncertainty

Furthermore the physical understanding of the variable led one
to a more plausible explanation, namely, an uncertain modeling of
the quark (and gluon) momentum distributions inside the proton.

When model adjusted, discrepancy largely disappears:

100

= CTEQ4HJ

50

i | | I
400

i 1 L1
350

i 1 L1
300

i 1 L1
250

200

11 i 11|
150

-50 | | 11 1 |

Can be regarded as a "success" of the cut-based approach. Physical
understanding of output variable led to solution of apparent discrepancy.
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[ .inear decision boundaries

A linear decision boundary is only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary is almost useless.
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Nonlinear transtormation of inputs

We can try to find a transformation, Xl e, xn—} (pl(i{h); et (pm(_)z)
so that the transformed “feature space” variables can be separated
better by a linear boundary:
y Here, guess fixed
Py =tan | le X1) — Dbasis functions

—— (no free parameters)
Pr=\ X1 X,
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Neural networks 1n particle physics

For many years, the only "advanced" classifier used in particle physics.

| hi(Z) = s (in + > wijfﬂj) :
Jj=1
t(¥) = s (ao + Z aihi(f)) :
Xy i=1

hidden layer

s(t)

08 r

Usually use single hidden layer,
logistic sigmoid activation function:

06 r
04 r

0.2

s(u) = (1+ e Y)i

0
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Neural network example from LEP 11

Signal: ete™ — W*W~ (often 4 well separated hadron jets)
Background: e*e™ — qqgg (4 less well separated hadron jets)

0.2 0.2 0.2

s | oo | o < 1nput variables based on jet
E oo /:;pﬁll oos | o structure, event shape, ...
T ey 0 “haws  © wemes  nONE by itself gives much separation.
. h o H }L% Neural network output:
* logMes) “ spheriaity * Py = 3
u.a:— e c-.:-z_— " o.n:— Ty :f — J
?_og(ﬁ.p?:norityi a U-5_|hrust1 o 'Ui:"n[:EH:; i [¢] o.1 0.2 3 0.4 [ 5a ] B 0.7 N%Srcn?ulpu"l

(Garrido, Juste and Martinez, ALEPH 96-144)
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Some 1ssues with neural networks

In the example with WW events, goal was to select these events
so as to study properties of the W boson.

Needed to avoid using input variables correlated to the
properties we eventually wanted to study (not trivial).

In principle a single hidden layer with an sufficiently large number of
nodes can approximate arbitrarily well the optimal test variable (likelihood
ratio).

Usually start with relatively small number of nodes and increase
until misclassification rate on validation data sample ceases
to decrease.

Often MC training data is cheap -- problems with getting stuck in

local minima, overtraining, etc., less important than concerns of systematic
differences between the training data and Nature, and concerns about

the ease of interpretation of the output.
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Overtraining

If decision boundary is too flexible it will conform too closely
to the training points — overtraining.

Monitor by applying classifier to independent test sample.

training sample independent test sample

G. Cowan Weizmann Institute, 17 Jan 10 / Multivariate Methods page 28



Particle 1.d. in MiniBooNE

Detector 1s a 12-m diameter tank

of mineral o1l exposed to a beam _Etectron candidate
fuzzy ring, short tr?gk

of neutrinos and viewed by 1520 v~ &

photomultiplier tubes: w

MiniBooNE Detector

Muon candidate
sharp ring, filled in

s

wt
ﬁ Pion candidate
_two "e-like" rings
B s Wy
Search for v _to v_ oscillations z 1
. H © : Nn_— g<n
required particle 1.d. using > -

information from the PMTs.
H.J. Yang, MiniBooNE PID, DNP0O6
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Decision trees

Out of all the input variables, find the one for which with a
single cut gives best improvement in signal purity:

E W,

signal !

E | wﬂ—é W,
signal ! background !

where w.. is the weight of the ith event.

P=

Resulting nodes classified as either
signal/background.

Iterate until stop criterion reached
based on e.g. purity or minimum
number of events in a node.

The set of cuts defines the decision
boundary.
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T YAttt o e D)
Decision trees (2)
The terminal nodes (leaves) are classilied as signal or background

depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with the discriminant function

f(x)=1if xesignalregion, -1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that is more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with
X ,0n X event data vectors (each x multivariate)

1 N
Yoy, true class labels, +1 for signal, —1 for background
1
W, W event weights

Now define a rule to create from this an ensemble of training samples
I, T, ... derive aclassifier from each and average them.

G. Cowan Weizmann Institute, 17 Jan 10 / Multivariate Methods page 32



AdaBoost

A successful boosting algorithm 1s AdaBoost (Freund & Schapire, 1997).

First initialize the training sample 7' using the original

X oeiey X event data vectors

1 N
Yseees ¥y, true class labels (+1 or -1)
i
o (D o (D :
W, W event weights N

with the weights equal and normalized such that Z WE-” =1.
i=1

Train the classifier f (x) (e.g. a decision tree) using the weights w'!

SO as to minimize the classification error rate.
N
_ (1) 7/ :
51_2 w, Iy, f1(x;)<0),
i=1

where [(X) = | if X 1s true and 1s zero otherwise.
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Updating the event weights (AdaBoost)

Assign a score to the kth classifier based on its error rate:

1-¢,

o, =In
k ‘

Define the training sample for step k+1 from that ot £ by updating
the event weights according to

Eat) . e_ﬂkfk(x!}yim
W&+“:WE'
/ /Z k- ¥~ Normalize so that
i =eventindex k= training sample index (k+1)_
& Samp 2 wih=1
1
K
Iterate K times, final classifieris y(X)=)_ o f(x,T,)
k=1
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BDT example from MiniBooNE

~200 input variables for each event (v interaction producing e, | or 7).

Each individual tree 1s relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

l | I I | I | I | I I I | I I I | | I |

1 7 e un-weighted misclassified event rate ]
08 ] a weighted misclassified event rate. err_ 1
- I * o= B*In((1-err_)lerr, ). !5.=U.:':
S 06 : AP S,
8 4

=
e

L

I I 1 I I I I I I I I I I 1 I 1
0 200 400 600 800 1000
Number of Tree [terations

B. Roe et al., NIM 543 (2005) 577

G. Cowan Weizmann Institute, 17 Jan 10 / Multivariate Methods page 35



Monitoring overtraining

Training MC Samples .VS.  Testing MC Samples

. . E — 1500 —
From MiniBooNE ™ Nuee =1 ] M=
20000 - n —_ ::
example: 10000 i I] 500 Ei |l
] " b H
Performance stable S N NARAE DRSS AR MR MARAE DR
after a few hundred 20 q  Niee =100 w0 {  Nigee = 100
1 W 6000 PN
trees. 1000 S 1000 = PN
“.-" " : 2000 __:" A
BDOZ —EDI - I—IIDI S él I IIIGI - IEO ’ —.:.OI a I—IIOI o EI A IIEII i I2E|
2000 ] Ntlee - 500 10000 _: Ntl‘ee - 500
E 7500  enT .
1000 _ ﬁ 5000 — I_I_-" -"-.,
1 2500 %,
0 - ! I T e B m e |
2000 i w000 20 0 -
1500 tlee _ ]'DUO s000 : Ntl‘ee = 1000
1000 4000 _ _'.,.-' _-'-.,1_
500 — 2000 -___.- A
0 et I o~
-40 -40 -20 0 20
Boosting Outputs Boosting Outputs
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Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the

update rule for the weights.

3 - —
1 ® e-Boost(45) H N
2.5 4 & AdaPBoost(45) i
1 ¢ e-logitBoost(45) §f - j3
3 2 g * e—hingel?:c-tc:w.t(30}‘r'Jr S |8
& ] o Sl |2
v 153°¥ AdaBoost(8) Fie x
B ] 5
= ] =
2 17 e
0.5 Fromeie
ETMW Ntree = 500
07— 11—
20 40 60 80
Signal Efficiency (%)
3 LNy
1 ® e-Boaost(45) i g
2.5 4 & AdaBoost(45) §
1 ¢ e-logitBoost(45) i
= 2 4 * e-hingeBoost(30) - 1.8
= . o=
2 1547 AdaBoost(8) @
= . =
= e-hingeBoost(8)4 «# =
o 1 4 g (814 =
0.5 -
Ntree = 2000
[} T | T T T I T T T I T T T I T
20 40 60 80

G. Cowan

Signal Efficiency (%)

L

2.5

e-Boost(45)

R

L

= E—hingeBmst{Sl i

Ntree = 1000

H
AdaBoost{45) !

e-logitBoost(45) i E
£-hingeBoost(30) /
AdaBoost(8)

‘20 40 60
Signal Efficiency (%)

e-Boost(45)
AdaBoost(45)
e-logitBoost(45)
£-hingeBoost (30)

*o b

4

AdaBoost(8)

® =-hingeBoost(8) £ 4

1{:

Nitree = 3000

|||_|||||||||||||||||||||||

T 2'O T T T 4'0 T T T E-IU T T
Signal Efficiency (%)
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Boosted decision tree summary

Advantage of boosted decision tree 1s 1t can handle a large number
::}fmpms. Those that provide little/no separation are rarely used as tree

La*]
o

splitters ar
Easy to deal with inputs of mixed types (real, integer, categorical...).

If a tree has only a few leaves it is easy to visualize (but rarely use only a

single tree).

There are a number of hoosting algorithms, which differ primarily in the

rule for updating the weights (e-Boost, LogitBoost,...)

Other ways ol combining weaker classiliers: Bagging (Boostrap-
Aggrecaling), cenerates the ensemble of classifiers by random sampling
with replacement from the full traiming sample.
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Single top quark production (CDF/DO0)

Top quark discovered in pairs, but

SM predicts single top production. .
Use many inputs based on

q t jet properties, particle 1.d., ...
W+
CDF Run Il Preliminary, L=3.2 fb°

3 eDaa W Web [ WP
-, _ a4 - [ schannel [ tthar 0 HenW | =
q b o~ 250 M tchannel [0 We+Wee [l Z+jets,Diboson 2
B | o
. e S
Pair-produced tops are now s 12
a background process. s — signal :
; (blue + g
§ I
proton 100 £ green) g_
“ | E
-

50 ;‘ -

f B
antiproton i - b et o
100 150 200 250 300 350 400 450 500 550
Ht (GeV)
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Different classifiers for single top

S =00 (b Z+jets IR tt— ¢ R = 900 (a) Data ¢ wbb I
g_'! ‘ Multijets Il (f—(+jets Il ﬁ ' th +tgb Il Wee Il
" 400 w 400 Wjj+We
= 150 = 150
2 S |
@ 300 o w 300 e
. 50 - 50 i
200__ 86 o7 o 200~ %6 07 08 o039 1
100 - * Po 231 100 D@ 2.3 fb"
% 02 04 06 08 1 % 02 04 06 08 1
Bayesian Neural Networks Qutput Boosted Decision Trees Output

Also Naive Bayes and various approximations to likelithood ratio,,....

Final combined result 1s statistically significant (>5c level) but not
easy to understand classifier outputs.
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Support Vector Machines

Map input variables into high dimensional feature space: x — ¢

Maximize distance between separating hyperplanes (margin)
subject to constraints allowing for some misclassification.

Final classifier only depends on scalar
products of @(x):

y(_x):sign(z (xfyf(*p(x)-(*p(fob\

So only need kernel

K(x,x")=¢(x)p(x')
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Support Vector Machines

Support Vector Machines (SVMs) are an example of a kernel-based
classitier, which exploits a nonlinear mapping of the input variables
onto a higher dimensional feature space.

The SVM finds a linear decision boundary in the higher dimensional space.

. . .
But thanke tn the ** 10k’ one doe
L FLLL LIRCRRNNSY LF R - I 1% LA L S B L Y

—

arnal
Il DA%

(g

[y
a1
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explicitly the feature space transformation.
Some references for kernel methods and SV Ms:

The books mentioned in www.pp.rhul.ac.uk/~cowan/mainz_lectures.html

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
research.microsoft.com/~cbhurges/papers/SVMTutorial.pdf

N. Cristianini and J.Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, 2000.

The TMVA manual (!)
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Linear SVMs

Consider a training data set consisting of
X....x ~ eventdata vectors
1

Y true class labels (+1 or —1)

]j... N

}_r

Suppose the classes can be separated by a hyperplane defined by
a normal vector w and scalar offset / (the “*bias™). We have

X.W+h>+1 forall y = +1
I I

X.-w+h<-1 forall y. = -1
I I

or equivalently

margin

Vi(x;w+b)-1>( forall:
Bishop Ch. 7
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Margin and support vectors

The distance between the hyperplanes delined by v(x) =xw + b =+1 and

v(x) = —1 1s called the margin, which is:

= y=—1

B y_ﬂ

If the training data are perfectly separated then this means there are
no points inside the margin.

Suppose there are points on the margin (this is equivalent to defining
the scale of w). These points are called support vectors.
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[Linear SVM classifier

We can define the classifier using

f(x)=sign(x-w+b)

which is +1 for points on one side of the hyperplane and —1 on the other.

The best classifier should have a large margin, so to maximize

we can minimize ||WH2 subject to the constraints

yl_(’.xl_.w{_b)_]_ >() for all i
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Lagrangian formulation

This constrained minimization problem can be reformulated using
a Lagrangian

N
L= Wi~ X oy xw+b)-1)
i=1

\\

We need to minimize L with respect to w and / and maximize

positive Lagrange multipliers o

with respect to o.
I

There is an o for every training point. Those that lie on the margin
(the support vectors) have o > 0, all others have o = 0. The solution

can be written (sum only contains

w:Zaiyixi
1

support vectors)
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Dual formulation

The classifier function 1s thus

f(x)=sign(x-w+b)=sign

Z O‘fyix'xi+b)

[t can be shown that one finds the same solution a by minimizing
the dual Lagrangian

1
LD:Z]_: “1‘5; XV Vi Xi X

So this means that both the classifier function and the Lagrangian
only involve dot products of vectors in the input variable space.

G. Cowan Weizmann Institute, 17 Jan 10 / Multivariate Methods

page 47



Nonseparable data

If the training data points cannot be separated by a hyperplane,
one can redefine the constraints by adding slack variables &f_:

Yi(X;w+D)+E=1>0withg;>0 for an

Thus the training point x_ is allowed to
be up to a distance ﬁi on the wrong side .
of the margin, and &J_ = (0 at or on the

. . &
right side. / g

For an error to occur we have & > 1, so ) , °£=0
p: 7
=
i
1s an upper bound on the number of training errors.
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Cost function for nonseparable case

To limit the magnitudes of the @i we can define the error function that

we minimize to determine w to be

S 1 2 k
E(w)=5wl+C( 2
i
where C 1s a cost parameter we must choose that limits the amount
of misclassification. It turns out that for k<=1 or 2 this 1s a quadratic

programming problem and furthermore for k=1 it corresponds to

minimizing the same dual Lagrangian

L=Y a2
D= O*’FE GG Y Y i X X
i i
where the constraints on the o become () g ai,ﬁgc .
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Nonlinear SVM

So far we have only reformulated a way to determine a linear
classifier, which we know is useful only in limited circumstances.

But the important extension to nonlinear classifiers comes from first
transforming the input variables to feature space:

-

@ (X)=(@y(X),..., 0, (X))

These will behave just as our new “input variables”. Everything
about the mathematical formulation of the SVM will look the same

as before except with @(x) appearing in the place of x.
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Only dot products

Recall the SVM problem was formulated entirely in terms of dot
products of the input variables, e.g., the classifier 1s

Z“f%x'xﬁb)

so in the feature space this becomes

Zo‘ffyiﬂ_b(x)'(,_b(xi)er)

f(x)=sign

f(x)=sign
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The Kernel trick

How do the dot products help? It turns on that a broad class of
kernel functions can be written in the form:

— I

Kix,x")=¢(x)-p(x')

Functions having this property must satisty Mercer's condition
J Kix,x")g(x)g(x")dxdx'=0

for any function g wherej g (x)dx is finite.

So we don't even need to find explicitly the feature space transformation

¢(x), we only need a kernel.
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a number of techniques for finding kernels, e.g., constructing

Ther
new ones from known ones according to certain rules (ct. Bishop Ch 6).

9"
Y]

dl

Frequently used kernels to construct classifiers are e.g

K(X,X')Z(XfX'JrQ)p polynomial
K(}_’,X') exp (_HX X H ) Gaussian
| \ 20 }

K(x,x')=tanh(k(x-x')+0)  sigmoidal
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Using an SVM

To use an SVM the user must as a minimum choose

a kernel function (e.g. Gaussian)
any free parameters in the kernel (e.g. the o of the Gaussian)
a cost parameter C (plays role of regularization parameter)

The training is relatively straightforward because, in contrast to neural
networks, the function to be minimized has a single global minimum.

Furthermore evaluating the classifier only requires that one retain
and sum over the support vectors, a relatively small number of points.

The advantages/disadvantages and rationale behind the choices above
1s not always clear to the particle physicist -- help needed here.
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SVM in particle physics

SVMs are very popular in the Machine Learning community but have
yet to find wide application in HEP. Here is an early example from
a CDF top quark anlaysis (A. Vaiciulis, contribution to PHYSTATO02).

. 1 E E sw o
signal I I 2 L

0.4~ gFor @i 1g QUM |
- | —cuts

0.4 06 038 1
background eff.
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Summary on multivariate methods

Particle physics has used several multivariate methods for many years:
linear (Fisher) discriminant
neural networks
naive Bayes

and has 1n the last several years started to use a few more
k-nearest neighbour
boosted decision trees
support vector machines

The emphasis 1s often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 5o significance with a sophisticated (opaque) method will win the
competition if backed up by, say, 4o evidence from a cut-based method.

G. Cowan Weizmann Institute, 17 Jan 10 / Multivariate Methods page 56



Quotes I like

“Keep it simple.
As simple as possible.
Not any simpler.”
— A. Einstein

“If you believe in something
you don't understand, you suffer,...”
— Stevie Wonder
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Extra slides
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2 ed., Wiley, 2001
A. Webb, Statistical Pattern Recognition, 2™ ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 2005, 2007....) see
www.phystat.org

Caltech workshop on multivariate analysis, 11 February, 2008
indico.cern.ch/conferenceDisplay.py?confId=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)

www-group.slac.stanford.edu/sluo/Lectures/Stat2006 Lectures.html
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Software for multivariate analysis

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual

StatPatternRecognition, [. Narsky, physics/0507143

Further info from www.hep.caltech.edu/~narsky/spr.html
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported
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Decision boundary flexibility

The decision boundary will be defined by some free parameters that
we adjust using training data (of known type) to achieve the best
separation between the event types.

Goal 1s to determine the boundary using a finite amount of training data
SO as to best separate between the event types for an unseen data sample.

e
e

- - .

overtraining boundary too rigid good trade-off
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