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Outline 
Developments related to setting limits (CLs, PCL, F-C, etc.) 

 CCGV arXiv:1105.3166 

Asymptotic formulae for distributions of test statistics based 
on the profile likelihood ratio 

 CCGV, arXiv:1007.1727, EPJC 71 (2011) 1-19 
Other recent developments 

 The Look-Elsewhere Effect, Gross and Vitells, 
 arXiv:1005.1891, Eur.Phys.J.C70:525-530,2010 
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Reminder about statistical tests 

Consider test of a parameter µ, e.g., proportional to cross section. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Test statistics and p-values 
Often construct a test statistic, qµ, which reflects the level 
of agreement between the data and the hypothesized value µ. 

For examples of statistics based on the profile likelihood ratio, 
see, e.g., CCGV arXiv:1007.1727 (the “Asimov” paper). 

Usually define qµ such that higher values represent increasing  
incompatibility with the data, so that the p-value of µ is: 

Equivalent formulation of test:  reject µ if pµ < α. 

pdf of qµ assuming µ observed value of qµ 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

 Can give upper limit µup, i.e., the largest value of µ  
 not rejected, i.e., the upper edge of the confidence interval. 

The interval (and limit) depend on the choice of the test, which is 
often based on considerations of power. 
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Power of a statistical test 
But where to define critical region?  Usually put this where the 
test has a high power with respect to an alternative hypothesis µ′. 

The power of the test of µ with respect to the alternative µ′ is 
the probability to reject µ if µ′ is true: 

(M = Mächtigkeit, 
мощность) 

E.g., for an upper limit, maximize the power with respect to 
the alternative consisting of µ′  < µ. 

Other types of tests not based directly on power (e.g., likelihood  
ratio).  



G. Cowan  Statistical methods for particle physics / Wuppertal 14.7.11 7 

Choice of test for limits 
Often we want to ask what values of µ can be excluded on  
the grounds that the implied rate is too high relative to what is 
observed in the data. 

To do this take the alternative to correspond to lower values of µ. 

The critical region to test µ thus contains low values of the data. 

 → One-sided (e.g., upper) limit. 

In other cases we want to exclude µ on the grounds that some other 
measure of incompatibility between it and the data exceeds some 
threshold (e.g., likelihood ratio wrt two-sided alternative). 

The critical region can contain both high and low data values.   

 → Two-sided or unified (Feldman-Cousins) intervals. 



I.e. for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 
For purposes of setting an upper limit on µ use 

where 



G. Cowan  Statistical methods for particle physics / Wuppertal 14.7.11 9 

Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 
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Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  We use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 
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Previous ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure. 
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The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ = 1 (s+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 
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The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     
f (Q|s+b)     

ps+b pb 
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The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(one minus the p-value of the b-only hypothesis, i.e., 

Define: 

Reject s+b  
hypothesis if: Reduces “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (q|b)     f (q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 
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Feldman-Cousins unified intervals 
The initial motivation for Feldman-Cousins (unified) confidence 
intervals was to eliminate null intervals. 

The F-C limits are based on a likelihood ratio for a test of µ  
with respect to the alternative consisting of all other allowed values 
of µ (not just, say, lower values). 

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of µ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit. 

This means that when a value of µ is excluded, it is because 
there is a probability α for the data to fluctuate either high or low 
in a manner corresponding to less compatibility as measured by 
the likelihood ratio. 
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Power Constrained Limits (PCL) 
CLs has been criticized because the coverage probability of the 
upper limit is greater than the nominal CL = 1 - α by an amount  
that is not readily apparent (but can be computed). 

Therefore we have proposed an alternative method for protecting 
against exclusion with little/no sensitivity, by regarding a value of 
µ to be excluded if: 

Here the measure of sensitivity is the power of the test of µ 
with respect to the alternative µ = 0: 
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Constructing PCL 
First compute the distribution under assumption of the  
background-only (µ = 0) hypothesis of the “usual” upper limit µup  
with no power constraint. 

The power of a test of µ with respect to µ = 0 is the fraction of 
times that µ is excluded (µup < µ): 

Find the smallest value of µ (µmin), such that the power is at 
least equal to the threshold Mmin. 

The Power-Constrained Limit is: 
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PCL for upper limit with Gaussian measurement  

Suppose    ~ Gauss(µ, σ), goal is to set upper limit on µ. 

Define critical region for test of µ as 

This gives (unconstrained) upper limit: 

µ̂

inverse of standard Gaussian 
cumulative distribution 
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Power M0(µ) for Gaussian measurement  
The power of the test of µ with respect to the alternative µ′  = 0 is: 

standard Gaussian 
cumulative distribution 
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Spurious exclusion when µ fluctuates down 
Requiring the power be at least Mmin 

implies that the smallest µ to which one is sensitive is 

If one were to use the unconstrained limit, values of µ at or  
below µmin would be excluded if 

 ̂

That is, one excludes µ < µmin when the unconstrained limit  
fluctuates too far downward. 



G. Cowan  Statistical methods for particle physics / Wuppertal 14.7.11 22 

Choice of minimum power 
Choice of Mmin is convention.  Formally it should be large relative 
to α (5%).   Earlier we have proposed 

because in Gaussian example this means that one applies the 
power constraint if the observed limit fluctuates down by one  
standard deviation. 

In fact the distribution of µup is often roughly Gaussian, so we 
call this a “1σ” (downward) fluctuation and use Mmin = 0.16  
regardless of the exact distribution of µup.  

For the Gaussian example, this gives µmin = 0.64σ, i.e., the lowest  
limit is similar to the intrinsic resolution of the measurement (σ). 
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Upper limits for Gaussian problem 
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Coverage probability for Gaussian problem 
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PCL as a function of, e.g., mH 

PCL 

Here power below 
threshold; do not  
exclude. 
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Some reasons to consider increasing Mmin 
Mmin is supposed to be “substantially” greater than α (5%). 

So Mmin = 16% is fine for 1 – α = 95%, but if we ever want  
1 – α = 90%,  then16% is not “large” compared to 10%;  
µmin = 0.28σ starts to look small relative to the intrinsic resolution  
of the measurement.  Not an issue if we stick to 95% CL. 

PCL with Mmin = 16%  is often substantially lower than CLs. 
This is because of the conservatism of CLs (see coverage). 

But goal is not to get a lower limit per se, rather  

●  to use a test with higher power in those regions where one 
    feels there is enough sensitivity to justify exclusion and  

● to allow for easy communication of coverage (95% for 
    µ ≥ µmin; 100% otherwise). 
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A few further considerations  
It could be that owing to practical constraints, certain systematic 
uncertainties are over-estimated in an analysis; this could 
be justified by wanting to be conservative.  This means the +/-1  
sigma bands of the unconstrained limit are broader (but the median 
should move up), and it could  happen that the PCL limit for 
Mmin = 16% becomes lower (conservative = aggresive). 

Obtaining PCL requires the distribution of unconstrained limits, 
from which one finds the Mmin (16%, 50%) percentile. 

In some analyses this can entail calculational issues that 
are expected to be less problematic for Mmin = 50% than for 16%. 

Analysts produce anyway the median limit, even in absence of 
the error bands, so with Mmin = 50%  the burden on the analyst is  
reduced somewhat (but one would still want the error bands). 

We therefore recently proposed moving Mmin to 50%. 
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Treatment of nuisance parameters 
In most problems, the data distribution is not uniquely specified 
by µ but contains nuisance parameters θ. 

This makes it more difficult to construct an (unconstrained) 
interval with correct coverage probability for all values of θ, 
so sometimes approximate methods used (“profile construction”). 

More importantly for PCL, the power M0(µ) can depend on θ. 
So which value of θ to use to define the power? 

Since the power represents the probability to reject µ if the 
true value is µ = 0, to find the distribution of µup we take the  
values of θ that best agree with the data for µ = 0: 

May seem counterintuitive, since the measure of sensitivity 
now depends on the data.  We are simply using the data to choose 
the most appropriate value of θ where we quote the power. 
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Summary on CLs, PCL, etc. 
With a “usual” confidence limit, a large downward fluctuation 
can lead to exclusion of parameter values to which one has 
little or no sensitivity (will happen 5% of the time). 

PCL solves this problem by separating the parameter space into 
regions within which one has/hasn’t sufficient sensitivity as given 
by the probability to reject µ if background-only model is true. 

 Current recommendation:  power M0(µ) ≥ 0.5. 

Within region with sufficient sensitivity, an upper limit can be set 
with a one-sided test (highest power) and exact 1 – α coverage. 

It is important to report both the constrained and unconstrained 
limits, so one can see where the power constraint comes into play. 

Procedure easily adapted to problems with nuisance parameters  
(quote power at estimated values of nuisance parameters for µ = 0). 



G. Cowan  Statistical methods for particle physics / Wuppertal 14.7.11 page 30 

 More recent developments 
Large-sample statistical formulae for a search at the LHC 

 Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, 
  EPJC 71 (2011) 1-19 
 Significance test using profile likelihood ratio 
 Systematics included via nuisance parameters 
 Distributions in large sample limit, no MC used. 

Progress on related issues (some updates from PHYSTAT2011): 
 The “look elsewhere effect” 
 Combining measurements (RooStats) 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 

Assume the ni are Poisson distributed with expectation values 
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signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 

Assume the mi are Poisson distributed with expectation values 
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nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 
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maximizes L for 
Specified µ	



maximize L	



The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 
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i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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p-value for discovery 

G. Cowan  Statistical methods for particle physics / Wuppertal 14.7.11 

Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 
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So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  
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Test statistic for upper limits 

For purposes of setting an upper limit on µ use 
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Note for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

From observed qµ find p-value: 

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 

where 
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Alternative test statistic for upper limits 
Assume physical signal model has µ > 0, therefore if estimator 
for µ comes out negative, the closest physical model has µ = 0. 

Therefore could also measure level of discrepancy between data  
and hypothesized µ with 
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Performance not identical to but very close to qµ (of previous slide). 
qµ  is simpler in important ways:  asymptotic distribution is  
independent of nuisance parameters. 
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Wald approximation for profile likelihood ratio 
To find p-values, we need: 

For median significance under alternative, need: 
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Use approximation due to Wald (1943) 

sample size 
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Noncentral chi-square for -2lnλ(µ) 
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If we can neglect the O(1/√N) term, -2lnλ(µ) follows a 
 noncentral chi-square distribution for one degree of freedom 
with noncentrality parameter 

As a special case, if µ′ = µ then Λ = 0 and -2lnλ(µ) follows 
a chi-square distribution for one degree of freedom (Wilks). 
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The Asimov data set 
To estimate median value of -2lnλ(µ), consider special data set 
where all statistical fluctuations suppressed and ni, mi are replaced 
by their expectation values (the “Asimov” data set): 

G. Cowan  Statistical methods for particle physics / Wuppertal 14.7.11 

Asimov value of 
-2lnλ(µ) gives non- 
centrality param. Λ,	


or equivalently, σ.	
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Relation between test statistics and 	
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Distribution of q0 

Assuming the Wald approximation, we can write down the full  
distribution of q0 as 

G. Cowan  Statistical methods for particle physics / Wuppertal 14.7.11 

The special case µ′ = 0 is a “half chi-square” distribution:  
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  
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The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 
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Relation between test statistics and       	
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Assuming the Wald approximation for – 2lnλ(µ), qµ and qµ  
both have monotonic relation with µ.  

~ 

And therefore quantiles 
of qµ, qµ can be obtained 
directly from those  
οf µ (which is Gaussian). ˆ 

̃ 

~ 
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Distribution of qµ	



Similar results for qµ	
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Distribution of qµ	
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Similar results for qµ	

̃ 

̃ 
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Monte Carlo test of asymptotic formula 	
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Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ	


level (q0 = 25) already for 
b ~ 20. 
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Monte Carlo test of asymptotic formulae 	
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For very low b, asymptotic 
formula underestimates Z0. 

Then slight overshoot before 
rapidly converging to MC 
value. 

Significance from asymptotic formula, here Z0 = √q0 = 4,  
compared to MC (true) value. 
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Monte Carlo test of asymptotic formulae 	
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Asymptotic  f (q0|1)  good already for fairly small samples. 

Median[q0|1] from Asimov data set; good agreement with MC. 
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Monte Carlo test of asymptotic formulae 	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 
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Monte Carlo test of asymptotic formulae 	
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Same message for test based on qµ. 

qµ and qµ give similar tests to  
the extent that asymptotic 
formulae are valid. 

~ 

~ 
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Discovery significance for n ~ Poisson(s + b) 

Consider again the case  where we observe n events , 
model as following Poisson distribution with mean s + b 
(assume b is known). 

1)   For an observed n, what is the significance Z0 with which 
     we would reject the s = 0 hypothesis? 

2)   What is the expected (or more precisely, median ) Z0 if  
     the true value of the signal rate is s? 
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Gaussian approximation for Poisson significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for Poisson significance 

Likelihood function for parameter s is 

or equivalently the log-likelihood is 

Find the maximum by setting  

gives the estimator for s:  
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Approximate Poisson significance (continued) 
The likelihood ratio statistic for testing s = 0 is 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z0|s+b], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(µ s+b),  median significance, 
assuming µ = 1, of the hypothesis µ = 0 

“Exact” values from MC, 
jumps due to discrete data. 

Asimov √q0,A good approx. 
for broad range of s, b. 

s/√b only good for s « b. 

CCGV, arXiv:1007.1727 
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Using likelihood ratio Ls+b/Lb	
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Many searches at the Tevatron have used the statistic 

likelihood of µ = 1 model (s+b) 

likelihood of µ = 0 model (bkg only) 

This can be written 
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Wald approximation for Ls+b/Lb	
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Assuming the Wald approximation, q can be written as 

i.e. q is Gaussian distributed with  mean and variance of 

To get σ2 use 2nd derivatives of lnL with Asimov data set. 
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Example with Ls+b/Lb	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
b = 20, s = 10, τ = 1. 

So even for smallish data  
sample, Wald approximation 
can be useful; no MC needed. 
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Summary on asymptotic formulae 
Asymptotic distributions of profile LR applied to an LHC search. 

 Wilks: f (qµ |µ) for  p-value of µ. 

 Wald approximation for f (qµ|µ′). 

“Asimov” data set used to estimate median qµ for sensitivity. 

 Gives σ of distribution of estimator of µ. 

Asymptotic formulae especially useful for estimating sensitivity in 
high-dimensional parameter space. 

Can always check with MC for very low data samples and/or 
when precision crucial. 
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The Look-Elsewhere Effect 
Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→ EPJC) 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.	



The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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p-value for fixed mass 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0. 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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p-value for floating mass 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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Distributions of tfix, tfloat 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 
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Trials factor 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells (arXiv:1005.1891) show that the “trials factor”  
can be approximated by 

where ‹N› = average number of “upcrossings” of -2lnL in fit range  
and 

is the significance for the fixed mass case. 

So we can either carry out the full floating-mass analysis (e.g. use  
MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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Upcrossings of -2lnL 
The Gross-Vitells formula for the trials factor requires the 
mean number “upcrossings” of -2ln L in the fit range based 
on fixed threshold. 

estimate with MC 
at low reference 
level 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 

Statistical methods for particle physics / Wuppertal 14.7.11 

Eilam Gross and Ofer Vitells, PHYSTAT2011 
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Combination of channels 
For a set of independent decay channels, full likelihood function is 
product of the individual ones: 

Trick for median significance: estimator for µ is equal to the 
Asimov value µ′ for all channels separately, so for combination, 

For combination need to form the full function and maximize to find  
estimators of µ, θ. 

 → ongoing ATLAS/CMS effort with RooStats framework 

where 

https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome 
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RooStats 
G. Schott 
PHYSTAT2011 

Statistical methods for particle physics / Wuppertal 14.7.11 
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RooFit Workspaces 

Able to construct full likelihood for combination of channels 
(or experiments). 

Statistical methods for particle physics / Wuppertal 14.7.11 

G. Schott 
PHYSTAT2011 
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Combined ATLAS/CMS Higgs search 
K. Cranmer 
PHYSTAT2011 

Given p-values p1,..., pN of H, what is combined p? 

Better, given the results of N (usually independent) experiments,  
what inferences can one draw from their combination? 

Full combination is difficult but worth the effort for e.g. Higgs search. 
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Summary of the rest 

ˆ 

Progress on related issues for LHC discovery: 

 Look elsewhere effect (Gross and Vitells) 

 New software for combinations (and other things):  RooStats 

Needed: 

 More work on how to parametrize models so as to include 
 a level of flexibility commensurate with the real systematic 
 uncertainty, together with ideas on how to constrain this 
 flexibility experimentally (control measurements). 
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Extra slides 
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Negatively Biased Relevant Subsets 
Consider again x ~ Gauss(µ, σ) and use this to find limit for µ. 

We can find the conditional probability for the limit to cover µ  
given x in some restricted range, e.g., x < c for some constant c. 

This conditional coverage probability may be greater or less than  
1 – α for different values of µ (the value of which is unkown). 

But suppose that the conditional coverage is less than 1 – α for  
all values of µ.  The region of x where this is true is a  
Negatively  Biased Relevant Subset. 

 Recent studies by Bob Cousins (CMS) and 
 Ofer Vitells (ATLAS) related to earlier publications, 
 especially, R. Buehler, Ann. Math. Sci., 30 (4) (1959) 845. 
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Betting Games 
So what’s wrong if the limit procedure has NBRS? 

Suppose you observe x, construct the confidence interval and assert  
that an interval thus constructed covers the true value of the  
parameter with probability 1 – α .   

This means you should be willing to accept a bet at odds α : 1 – α  
that the interval covers the true parameter value. 

Suppose your opponent accepts the bet if x is in the NBRS, and  
declines the bet otherwise.  On average, you lose, regardless of 
the true (and unknown) value of µ. 

With the “naive” unconstrained limit, if your opponent only accepts  
the bet when x < –1.64σ, (all values of µ excluded) you always lose! 

(Recall the unconstrained limit based on the likelihood ratio never  
excludes µ = 0, so if that value is true, you do not lose.) 
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NBRS for unconstrained upper limit 

Maximum wrt µ is less than 
1-α → Negatively biased 
relevant subsets. 

N.B. µ = 0 is never excluded 
for unconstrained limit based 
on likelihood-ratio test, so at 
that point coverage = 100%, 
hence no NBRS. 

For the unconstrained upper limit (i.e., CLs+b) the conditional 
probability for the limit to cover µ given x < c is: 

← 1 - α 
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(Adapted) NBRS for PCL 

Coverage goes to 100% for   
µ <µmin, therefore no NBRS.  

Note one does not have max 
conditional coverage ≥ 1-α 
for all µ > µmin (“adapted 
conditional coverage”).  But 
if one conditions on µ, no 
limit would satisfy this.  

For PCL, the conditional probability to cover  µ given x < c is: 

← 1 - α 
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Conditional coverage for CLs, F-C 


